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methods can be brought to bear. These are " scattering

"

problems.
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Ingeneral, want to fix momentum of incoming particles and predict probability to be scattered in some

particular direction . When particle energy is conserved, this is elastic scattering .

We will consider the (somewhat artificial) t -dimensional case . A more involved analysis is necessary in 2nd or 3d
,
where angular

dependence will be an important subject , adding a lotofcomplication .
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AL
→ - E

Ar⇒µ.<R region

①e study this set-up using non -normalizable , stationary States (often called "

scattering states
")

.
There is a nice interpretation

of this approach, but it's a little complicated to show that it is valid .

The time - independent Schrodinger equation has solutions in L & R regions given by plane caves :
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with Ei -- E -VL

Yr H = Are + Bre with PII -- E -Vr

Solving in the interaction region a ill give a relation b/w
(Ai

,
An) and 1B↳ Be) • (Necessarily a linear relation that is

a function of the energy , E.)



Our interpretation of this solution utilizes the probability current and density , and conservation equation.

o j -- Ii ITOH - 40--4) ) g.j + deep = o ⇒ o×j=o in stationary States .
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In plane wave , Ae
#P"
→ j = IAP

. En = IAP . velocity) . We interpret this as the flow rate of a beam of
particles past a point x . Then the continuity equation says :
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If we specialize to a localized potential ( so Volk) are have pie pr , so the simpler relation
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Now oe have a linear relation b/w (AL
,
Bc ) and far

,
Be) , and by continuity condition this can't be Ar

-

- BL
,
AE Diz .

Consequently , there will be a linear relation bro (Ac
, Br) and (Ar

,
BL) :

"
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2×2 matrix

The conservation condition tells us that S is norm -

preserving ,
so S is unitary . (SES

" ) . This is crucial for
the interpretation as a kind of asymptotic time evolution fuhich is made more precise using the so - called

"

interaction picture
") .

A case of special interest is Dr = O (or Ac --O) , so particleCsl incident from one side
. Say Br -- O, then

AL-s (Bc
,
Ar )

Defy : The reflection and transmission coefficients are defined as (doesn't require VE
2

• R =
is T = for if Verve)

Pelt , 12

Conservation equation implies RtT= I . (R is
"

percent particles reflected
"

.

Tis ' '

percent particles transmitted
"

. ) For
potential scattering with an S-matrix

S = § → T-- 15++1
' 12=15+-12

Similarly, IS- - l
'

and 1St- 12 are transmission and reflection coefficients for right -to- left scattering .



A completely solvable class of examples are step function potentials .
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- i , ai ) with a
.
= - e
,
an = to j V ,

= VL
, Vz=Yz .

In each interval we have plane
crave solutions :

4
,
.

= Aj eik + B e-ik
×

,
tz = E -Vj in (aj . . , a;]

Then the coefficients are related by Uj la; ) = Ujala;) , 4JTaj ) = 4¥ Taj) . This is a linear relation for the
(Ai, Bi ) , so we oilI have

i lair:

To relate (Ac, BJ = IA..
B
.
) to (Ar

,
Br) -- fan

,
Bn) are just have to compose these matrices.

⇐ f- M. Ma - - - Mn
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Oe can then reconstruct the S - matrix if are so desire . Let M -

- M
,Mz . .

. Ma, = FYI: IT:}) . Then you can quickly
check that we have :
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So as a practical matter, to understand scattering from step- function potentials the necessary input is
the matrix M ; .

This can be recovered

by direct calculation :

Yj Ral =Yj+, la) → Aj e
" %
t Bj e-

" ai
= Aj + , eikjai + Bj + , e-

it avi

4jrai=4j+i ra ) → Kj IAje
" 9
- Bj e-

" ai ) = Kj+ , ftp.eikiai- Bj + , e-" %)

Solving, we find :
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We've been
assuming

E > Vj for eachj , so in all intervals plane caves are the appropriate solutions. But we
can accommodate classically forbidden intervals by a simple substitution :

o if Ee Vj for somej , define = Nj - E ) and let Kj = - ilj .

We adopt a convention that ljeo ,
so :

o e

" "
= elk : right -moving- exponentially growing

• e-
it

= e- G'
×

: left-moving
- exponentially falling

All manipulations hold identically, so Mj takes the same form with this replacement.

Let's see the
"

basic " examples :

I : single barrier, VL=Yz= 0 ,
a
,

-

- o
,
a
,
= a In=3) :

K '=¥f2mfE-w)
"

,
e'=¥f2mN-ED"

" u.io

S = S
,
= Sz = K t k

'

d = d
,
= - dz = K - K'

ni- H: fan ." .÷i:÷:÷ :: s::÷÷÷:
- -

M
,
= ¥ (se

"da
-de

- isa

- de isa Sei da )

M
, ,
=
"

= eikaf-fktkmfzisinfkja.lu?,t2kk'fcosCk#/ → 1M
, ,
,z= rk'tk"fsiirkk7tkk'2f4cos%

(s '- d ' ) 4 K'K '
'

Mz ,
= = e

"" I → IM
, ,12= sin2rk'a7fk'

( S2- d ' ) 4K' K'
2

I 442k -
Z

114,12 hi-kid 'sinertia)

Combining : T= ⇒
=
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⇒
=
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K and K' are implicitly functions of E , so this gives amplitudes for reflection and transmission as functions of E .
When are take E T Vo

,

K'→ il ' and we get the modification
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Nonzero T in this range is
"

quantum tunnelling
" through the barrier. Exponential suppression in T from the denominator . Further reducing E T O , we can

describe bound States for the case Vo T O T E
.
Now we have K -o - il and K ' EIR

.

Now if one look at the defining relation for the S-matrix, ce see

S (§! ) = (Apg! ) E O for normalizable bound state
.

So zeroes of S-matrix at k = - il E - ilRzo encode bound States of the potential ! (In our case, this requires detest ,

which is Y÷ = O
.) Similarly, if we set K -- til C- i Tko , we cill see bound States as poles .
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Teide
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"" { Tisanes) = 0

This is a shadow ofa very general phenomenon in quantum mechanical scattering theory, where analytic properties of scattering amplitudes encode a wealth of
physical information . This is even more the case in relativistic scattering theory left.


