
AL AR
- K'=¥f2mfE-V))

"

,
e'=¥f2mN-ED" -

u
.
.

- - - - - - . , . - - - - i

s = S
,

-

- Sz = Kt K
'

D= d
,
= - dz - K - K'

e.inner.n=nni÷l:÷::÷: ÷÷÷:÷:

M
, ,
=
£d

= eikaf-fktkmkisinfk.gg?!,t2kk'fcosCk#/ → 1M
, ,
,z= rk'tk"fsin2rkk7tkk'44cos%

(s '- d ' ) 4 K'K '
'

Mz ,
= = e

""!¥Ij/ → IM
,
,12=sin2rk'a7fk'

( S2- d ' ) 4K' K'
2

When Br = 0 , we have :
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K and K' are implicitly functions of E , so this gives amplitudes for reflection and transmission as functions of E .

When are take E T Vo
,
K
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-0 il ' and we get the modification (have to track factors of i)
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Non-zero transmission coefficient T in this range describes
"

quantum tunnelling
"

.
For last
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The probability of penetrating the barrier falls off exponentially over a characteristic length scale et = uznh¥⇒ .
The t shows that

for macroscopic F- EV
,
this vill be a tiny distance.



This order- of -magnitude estimate combines well with the WKD approximation . A famous example is Gamow's model of nuclear decay .
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An L - particle (2protons t 2neutrons) is modelled as a particle in a square cell that, for ro r, , is replaced a ith a

repulsive Coulomb potential. We estimate the tunnelling probability using WHB and the approximation that the exponential decay
factor dominates the process .
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Noo we imagine (crudely ) that when in the nucleus, the L- particle bouncing around and colliding with the potential call o ith some

frequency I say Yer, if v is the "velocity " in the nucleus) . Then the tunnelling rate fa.ua. decay constant)
J
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in which case the half - life of the nucleus (the time after 50% of nuclei should decay) takes the form
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this result is massively dominated by the exponential dependence on IE . In experiments, by looking at different unstable isotopes of, say ,
Uranium faith 2=92 ) , one has E = 4.2 MeV - 6.7 MeV

.
This leads to values of th that vary betaeen 12 minutes

and 4.5--109years ,
16 orders of magnitude ! ! !



If we continue our results to negative E ( in particular, Vo e Et O ) , we should be able to say something about band States :
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Now if one look at the defining relation for the S-matrix, ce see

S (§! ) = (§! ) E O for normalizable bound state
.

So zeroes of S-matrix at k = - il E - ilRzo encode bound States of the potential ! For us, this requires detest = O ,
where
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then the non - zero care - functions in the forbidden regions have BL & Ar as non-zero coefficients . So (S") will have

to have zero eigenvalues . These are encoded in poles in S .
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and poles are in some positions as zeroes previously .

This is a shadow ofa very general phenomenon in quantum mechanical scattering theory, where analytic properties of scattering amplitudes encode a wealth of
physical information . This is even more the case in relativistic scattering theory left.



A bit on further directions : quantum theory now has an extraordinarily diverse set of applications and connections
to other subjects in pure and applied mathematics and physics . I want to mention a fear :

I> Geometric quantization : start with a general phase space ( symplectic manifold) i construct Hilbert space and algebra of
observables . Important connections to topics in "

geometric representation theory
"

and differential

geometry .

° Semi - classical analysis : whole branch of PDE coming out of WHB methods . Interesting interplay with complex
analysis (Stokes' phenomena , monoatomics , etc)

° Rigorous perturbation theory : a branch of functional analysis . More generally , a more detailed functional -analytic
treatment of quantum theory in terms of spectral theory puts much of what we've done

on much firmer footing .

° Quantum computing : what can you do cith qubits ? Manipulating superposition is more powerful than manipulating

just pure tenser states (i.e . classical bits) . Very of-the-moment !

° Relativistic QMIGFT : what happens when a particle can be changed into other particles for photons ) ? How
to incorporate E --me ? It's a major charge of perspective . All particles are
fluctuations of space - filling quantum fields (generalizing photons/EM field) .

And much more .

I hope you'll continue to investigate the subject!


