
Electromagnetism, Sheet 1: Introduction to Electrostatics

Practice with Vectors

You need to revise vectors from Mods. Here are a few relevant revision questions which you
need to be able to do, but which we won’t go through in the class:

(i) Prove the following:

~a ∧ (~b ∧ ~c) = (~a · ~c)~b− (~a ·~b)~c

∇∧ (ψ~V ) = ψ∇∧ ~V +∇ψ ∧ ~V

∇ · ( ~B ∧ ~C) = ~C · ∇ ∧ ~B − ~B · ∇ ∧ ~C

∇∧ ( ~A ∧ ~B) = ~A(∇ · ~B) + ( ~B · ∇) ~A− ~B(∇ · ~A)− ( ~A · ∇) ~B

Show that also

∇∧ (∇∧ ~A) = ∇(∇ · ~A)−∇2 ~A

where ∇2 ~A = (∇2A1,∇2A2,∇2A3) in cartesian coordinates.

(ii) Show that

∇∧∇φ = 0

for any differentiable function φ, and that conversely, if ~E is a differentiable vector field with
∇ ∧ ~E = 0 in a simply connected region of space then there exists a function φ for which
~E = ∇φ. What changes in φ leave ~E unchanged? (i.e. if ~E = ∇φ1 = ∇φ2 what can you say
about φ1 − φ2?)

(iii) Show that

∇ · ∇ ∧ ~A = 0

for any differentiable vector field ~A. One can also prove the converse: if ~B is a differentiable
vector field with ∇ · ~B = 0 in a suitable region of space then there exists a vector field ~A
for which ~B = ∇ ∧ ~A. Assuming for now that this is true, what changes in ~A leaves ~B
unchanged? (You need (ii) above for this.)

(iv) If ~E is a differentiable vector field satisfying∫
~E · dS = 0

for every closed surface S in a region R of space, use the divergence theorem to show that
∇ · ~E = 0 in R.

If ~B is a differentiable vector field satisfying∮
Γ

~B · d` = 0

for every closed curve Γ in a region R of space, use Stoke’s theorem to show that ∇∧ ~B = 0
in R.
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Now some electromagnetism: classwork starts here

1.- In 3-dimensional Cartesian coordinates define ~r = (x, y, z) and r = |~r|, as usual. Show
that ∇ · ~r = 3 and that, if r 6= 0, ∇r = ~r

r
. Deduce that, where r 6= 0,

∇2f(r) = f ′′ +
2

r
f ′ =

1

r
(rf)′′

(so that’s two things to prove; prime is d/dr)

Define ~E = −∇
(
k
r

)
for constant k. Show that, where r 6= 0, ∇ ∧ ~E = 0 (clearly) and

∇ · ~E = 0, while ∫
S

~E · dS = 4πk

where the surface integral is taken over any closed surface S which includes the origin. (First
take S to be a sphere with the origin as center, then use the Divergence Theorem to obtain
the results for more general S.)

2.- Consider two opposite charges, of magnitudes q and −q, separated by the vector ~d.
Compute the scalar potential at all points in space, in the limit in which q becomes very
large and d very small, with ~p ≡ q~d kept constant. Such configuration is called a dipole.

From the dipole potential compute the electric field at all points in space with r 6= 0. What
do you expect the net charge of the configuration to be? check this result through the Gauss
law for a sphere centered on the dipole.

3.- Consider an infinite cylinder of radius a and uniform charge density ρ. Find the scalar
potential at all points in space.

4.- You are told that in cylindrical polar coordinates (R, θ, z) the charge density is

ρ(R, θ, z) =
q

2πR
δ(R− a)δ(z) (1)

What does this charge density correspond to? compute the potential for all points in space
with R = 0. Can you compare this with anything you have seen before?

5.- In spherical coordinates the time-average potential of a neutral hydrogen atom is given
by

Φ(~r) =
q

4πε0

e−αr

r

(
1 +

αr

2

)
(2)

Find the distribution of charge that will result in this potential and interpret your result
physically.
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