
Electromagnetism, Sheet 3: Magnetostatics

1.- (i) A point particle P of charge Ze is fixed at rest at the origin in 3-dimensions, while
a point particle E of mass m and charge −e moves in the electric field of P . Write down
Newton’s equation of motion for E, and show that the orbit lies in a plane. If the orbit is
circular, with P at the centre, find the orbital frequency ω in terms of its radius a (together
with Z, e,m and ε0).

(ii) A point particle P of mass m and charge e moves with velocity ~v in a constant magnetic

field ~B = B~k, where ~k is the unit vector parallel to the z−axis and B is a constant (not
necessarily positive). Write down Newton’s equations of motion for P assuming the force on

the particle is e~v ∧ ~B, and show that ~v · ~k and v2 = ~v · ~v are constants of motion.

Show that, if ~v · ~k = 0, then P follows a circular path in a plane of constant z, with speed v
and radius a related by v = ea|B|

m
(so that the speed can be arbitrarily large).

What is the frequency with which the circles are described? What is the path if ~v · ~k 6= 0?

2.- In 3-dimensional Cartesian coordinates, define R = (x2 + y2)1/2 and ~A = (0, 0,−k logR).
Show that

∇ · ~A = 0, ∇2 ~A = 0

Now define ~B = ∇∧A. Write out ~B explicitly in coordinates. Deduce (preferably not using
this coordinate expression) that, where R 6= 0,

∇ · ~B = 0, ∇∧ ~B = 0

Use the coordinate expression for ~B to show that∮
Γ

~B · d` = 2πk

where the line-integral is taken along any close curve Γ which winds once around the z−axis
(anticlockwise). (First take Γ to be a circle in z = 0 centre at the origin, then uses Stoke’s
theorem to obtain the result for general Γ)

3.- Assume r 6= 0 throughout this question. Define the vector field ~A by

~A =
1

r3
~k ∧ ~r

where ~k is the unit vector along the z−axis and r, ~r are the usual things. Show that ~A can
also be written as ∇φ ∧ ~k with φ = 1/r. Use the results from the revision section above to

show that ∇ · ~A = 0 and that if ~B = ∇∧ ~A then ~B can be written as

~B = ∇∧ ~A = (~k · ∇)∇1

r
= ∇

(
~k · ∇1

r

)
.
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Deduce that ∇ · ~B = 0 (clearly) and that ∇ ∧ ~B = 0. Show that | ~B| = O(r−3) for large r,
and deduce that the integral ∫

S

~B · dS = 0,

where S is a sphere centered at the origin and having radius r, tends to zero as r → ∞.
Now explain why this integral over any closed S is zero (so that this field has zero magnetic
charge, even at the origin where it is singular.)

4.- Suppose that ~B is a differentiable vector field defined everywhere and with zero divergence:
∇ · ~B = 0. Define a vector field ~A by the following integral

A1(x, y, z) =

∫ 1

0

λ (zB2(λx, λy, λz)− yB3(λx, λy, λz)) dλ

together with its two cyclic permutations for A2 and A3. (Here ~A = (A1, A2, A3) etc. This

integral gives ~A at a point P as an integral along the straight line joining P to the origin.)

Show that

∂A2

∂x
− ∂A1

∂y
= B3

And deduce that ∇∧ ~A = ~B.

Proposed trick: Calculate the left-hand and do the integral; you need to find another formula
for d

dλ
Bi(λx, λy, λz) and see how to use it.

5.- A circular wire Γ of radius a lies in the plane z = 0 in Cartesian coordinates. Current I
flows anticlockwise around Γ. Use the following equations from the lectures:

~B(~r) =
µ0I

4π

∮
d` ∧ (~r − ~r′)
|~r − ~r′|3

(∗)

to calculate ~B at a point P on the z−axis, distance b from the origin. (Easier than it looks

if you first use symmetry to argue that ~B can only be in the ~k direction, then dot-product (∗)
with ~k before calculating.)

Now use (∗) above to obtain

~B(x, y, z) =
µ0I

2π

(
− y

R2
,
x

R2
, 0
)

for the magnetic field due to a straight wire, lying along the z−axis and carrying current I
(Here R2 = x2 + y2 ).
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