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1 Linear Systems

1.1 Fundamental theorems

Consider the linear, autonomous, first-order system of differential equations:
x = Ax (1.1)
x(0) = xo, (1.2)

where a dot represents d/dt, x € R", and A € M,(R), the set of n x n matrices with
coefficients in R. Questions we are typically interested in:

(i) Find the solution
(ii) Describe the behaviour of the solution close to the fixed point x = 0.
When n = 1 the equation is easy to solve:
T =ax = z(t) = exy.

tA A9

In general we might expect to be able to write something like x = e*xy. But what is e?

Definition 1.1. Let A € M, (R), t € R. Then the matriz exponential is

2. th Ak
tA __
=> — (1.3)
k=0

For a given T this series is absolutely, uniformly convergent for all ¢ < T'.
Theorem 1.2. The initial value problem (1.1)-(1.2) has the unique solution
x(t) = e'xq. (1.4)
Lemma 1.3. If A= BCB™!, then !4 = Be!“ B!,

Proof.
! A?>=BCB 'BCB~!'=BC?B™!.

Iterating (more properly induction) gives A¥ = BC¥B~! for all k. The result then follows
from Definition 1.1 and uniform convergence. O

If A is semi-simple (i.e. A can be diagonalised), then there exists B such that
A=BCB™', where C =diag(\i,...,\). (1.5)

Then
't = Bdiag(eM?, ... M) B! (1.6)
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1.2 Normal forms in two dimensions (Recap from Part A)

If A€ My(R), say A= (a;;) with a;; € R and x = (21, 22)7 the system is
T a11x1 + a2, (1.7)

2 = a2171 1 a22%2. (1.8)

.

For B €GL(2,R) (the group of n x n invertible matrices with real coefficients)
x = Ax = Bx = BAx = BAB™!'Bx = CBx,
where C = BAB™!. Thus y = Bx transforms the system x = Ax into
y = Cly. (1.9)
Depending on the eigenvalues A1, A2 € Spec(A) (the spectrum of A) , we can choose B such
that C has one of the following forms:
1. )\1, Ay € R
1.1 Saddle: \A2 <0
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1.3 Degenerate node: \; = Ay with A not semi-simple (i.e. the eigenspace is 1-dimensional).

)\ 1 — At t At
O = [ ] = Y1 yloe/\t + y20te ‘
0 A Y2 = Y20€

S

2;7/ [l I
AN
NSNS

Y1

2. A\, X2 € C. Then A\, =a+1ib, Ay = a —ib (a,b real).

2.1 Centre: a =0

Y10 cos(bt) — yao sin(bt)
Y20 cos(bt) + y10 sin(bt)
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2.1 Focus: a # 0
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dx _ p=A+D
ar TAX+BY  g-aAD-BC

g—¥=Cx+Dy A=p’-4q

1.3 Linear flows

Consider

x = Ax, x(0) =x¢ xeR", AeM,[R), n>1

The general solution is x(t) = e!xg.

Geometrically, et is a map, the linear flow. Let ¢; = e!4. Then

ot : R" — R" with ©i(x0) = exg = x(t).

(1.10)
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X0

Properties:
e o =1 (the identity map)

hd <Pt+s(X) = SDt(QOs(X)) = QDS(QOt(X)), Vx e R"

Consider the set of eigenvalues of A:
Spec(A) = {A1,...,  \} (1.11)

Definition 1.4. If A is such that Re()\) # 0, VA € Spec(A), then the linear flow e*/ is
hyperbolic. By extension, the system x = Ax is a hyperbolic system.

NB: Since the real part of all the eigenvalues are all different from zero, hyperbolic flows
are controlled by exponential contraction or expansion close to the fixed point.

Definition 1.5. Let E C R™. Then E is an invariant set of ¢ if p4(E) C E Vt € R.

Example 1.1. Let v be an eigenvector of A with eigenvalue A\, then E = Span(v) is an
invariant set.

Proof.
E = Span(v) = {cv : c € R}.

But

oi(ev) = etdev = cetv = ceMv = v e E Ve

O

We can now construct three subspaces depending on the real part of the eigenvalues.
First, consider the case where A is semi-simple and Spec(A) = {A1,..., \,}. We write the
eigenvalues and eigenvectors of A as Aw; = A\;w; (for j =1,...,n) where

)\j :aj+ibj, aj, bj € R, W ZUj+iVj, uj, vj € R".
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Definition 1.6. The stable, center, unstable linear subspaces are defined, respectively, as
e E° = Span(uj,v;| aj <0) (stable linear subspace)
e E°= Span(uj,v;| aj =0) (centre linear subspace)
e E" = Span(uj,v;| a; >0) (unstable linear subspace)
Define the dimensions of the stable (s), centre (¢) and unstable (u) linear subspaces :
ns = dim(E?), ne = dim(E°), Ny, = dim(E").

Then n = ns + ne + ny. By construction E*, E¢, and E™ are invariant sets.

In the case where the unstable and centre subspaces are empty, we have:

Lemma 1.7. If all the eigenvalues have megative real part, then Yxq € R™, the origin is
stable. That is, we have

: tA _
th_gloe x9 =0, (1.12)
and Vxg # 0
. tA, | _
7:_lglf_noo le" x| = 0. (1.13)

NB: For a general system the same result holds for all xg € E?.

If A is not semi-simple, then we take w; to be the generalised eigenvectors (See Perko,
p.33). For a degenerate eigenvalue A\ with multiplicity m, the generalised eigenvectors of A
given by m linearly independent solutions of

(A-=X)fw=0, k=1,...,m. (1.14)

These generalised eigenvectors form a basis of the eigenspace of eigenvalue .

Example 1.2.
-2 -1 0
A= 1 =20
0 0 2
0 1 0 1 0
wi=|1]|4+i| 0], wo=|1]|—-1i| 0 |, wy3= |0 |,
0 0 0 0 1

Al = —2+1, Ao = —2 — 1, A3 = 3.
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Example 1.3.

ES

Example 1.4.
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w-1] w-1]

A1:07 AQZO.

NB wy is a generalised eigenvector: it satisfies A>wo = 0 but not Awy = 0. E¢ = R?. The
typical way to find wa is to solve (A — AI)wo = wy. In this case since n, = 2 and the system
is two-dimensional there is nothing else wo could be.

Y2

Y1
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2 Nonlinear systems

2.1 Existence and uniqueness

Consider the nonlinear, autonomous, first-order system of differential equations:
x = f(x), x(0) = xq (2.1)

where f : E C R™ — R” is the vector field. NB autonomous means 0;f = 0, i.e. f does not
depend explicitly on t. In general, this equation cannot be solved explicitly.

Questions we might be interested in:

What are the possible solutions (from a geometric point of view)?

What is the stability of such solutions (how do nearby solutions behave?)?

Theorem 2.1. Let E be an open subset of R™ containing xo and let f € C*(E). Then there
exists ¢ > 0 such that
K=f(x),  x(0)=x0

has one and only one solution x(t) on [—c¢, c].

Remark 2.2. The proof is by Picard’s method, after showing that f € C*(E) implies that f
is locally Lipschitz on E.

Remark 2.3. This is a local result. It guarantees the existence of a unique solution but only
for a short time.

Remark 2.4. If x(¢) is a solution of the equation [not the initial condition] then so is x(t+0)
for any o € R. This is a consequence of 0;f = 0. Thus we also have existence and uniqueness
on an interval t € [tg — ¢, to + ¢| when the initial condition is replaced by x(t9) = xo.

Remark 2.5. For the rest of this course, unless otherwise specified, we will assume that the
maximum interval of existence is R (we are interested in global behaviour).

Remark 2.6. The general conditions guaranteeing the existence of global solutions are not
obvious.

We will find it useful to highlight the parametric dependence of the solution on the initial
condition by writing x = x(¢;xg).

2.2 Flows, asymptotic sets, and invariant sets

We assume that the maximum interval of existence is R (i.e. solutions are defined for all time
for all initial conditions).

Let E be an open subset of R", and f € C(E). For xq € E, let x(¢;x0) be the solution to
(2.1). Then
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Definition 2.7. An orbit or trajectory based on xg is the curve I'y, C E defined by
I'x, = {x(t;x0) | t € R} (2.2)
Definition 2.8. The flow of the differential equation (2.1) is the map ¢; : E — E such that
er(x0) = x(t;x0). (2.3)

The space F C R"™ on which the solutions live is called the phase space.

\ x(t;x0) € 'k,

X0

Y

Properties of flows:
e o =1 (the identity map)
o Grs(%) = pils (X)) = ps(@r(x)), VxR
e Let U be a neighborhood of xg and V' = ¢;(U), then

o_t(pi(x)) = x, VxeU (2.4)
eilp—i(y) =y, VyeV (2.5)

et(Xo

_
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2.2.1 Invariant sets

Definition 2.9. Consider a vector field f € C1(FE), defining a flow ¢, : E — E.
Then S C FE is an invariant set of ¢ if

pr(9) S S VieR (2.6)

Example 2.1.
xoe_t
22
yoet + §O(et o eth)

T =
j=y+a p(xo) =

Then the sets
S; ={xeR? | y=—2?/3}, Sy ={xcR?*|2z=0}

are both invariant.

Proof. Sy is invariant because g = 0 = z = xge! = 0. If xg € S; then yo = —x3/3. Then
:c()e_t .CC()e_t
Pulxo) = —afet + Q;g(et —e 2 N —a;ge_% <5

2.2.2 Attracting sets

Definition 2.10. A point p € F is an w-limit point of ¢;(x) if there exists a sequence of
times t; < ty < ... < t,, with t; — 0o as i — oo such that

lim ¢y, (x) = p. (2.7)

1—>00

Similarly, a point p € FE is an a-limit point of ¢(x) if there exists a sequence of time
t1 >ty > ... >t,, with t; & —oc0 as ¢ — oo such that

lim 1, (x) = . (2.8)
1—00
Example 2.2.
i = —yta(l—a?—y?)

z+y(l—2®—y?)
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Write x = rcosf, y = rsinf to give
Fo= r(l—r?
6 = 1

The circle r = 1 is an w-limit set, i.e. each point on the circle is an w-limit point. The point
r = 0 is an a-limit point.

Remark 2.11. Note that no point on the circle r = 1 is a limit point of the flow.

=
Vi

Y

E==_—1
===/

x

Definition 2.12. An closed invariant set A C E is called an attracting set of (2.1) if there is
some neighbourhood U of A such that

pU)CU Vt>0 and A= [)eU).
teR

Here a neighbourhood of A is any open set containing A.

. not allowed

Remark 2.13. Different authors use different definitions of an attracting set. Wiggins and
Pujals & Sambarino use the definition above, but for those following Perko we note he uses
the following definition.

Definition 2.14 (Perko). An closed invariant set A C E is called an attracting set of (2.1)
if there is some neighbourhood U of A such that for all x € U,

wee(x)eU V>0 and wr(x) = A ast — oc.



B5.6 Nonlinear Systems Draft date: 25 January 2020 2-5

Here we say that x(t) — A as t — oo if d(x(t), A) — 0 as t — oo where d is the distance
function.
The domain of attraction is the set of all initial conditions that have A as w-limit set.

That is
= U e (U) (2.9)
<0

Example 2.3.

, 545 5, 1, y
- V. 5 1
z y+m<1 2t T Y +4:L'+ :cy +4 7'":7“(1—4r2+47”4>:r(l—r2)<1_

S \\\\ / ///

2 ‘<\

/ | \
y ;/ SN //‘} /r»’ 05
B / /i\\J/// S -1.0
ISR
Example 2.3 Example 2.4
Example 2.4.
9'3:fy+$(172x272y2+x4+2$2y2+y4) 7'":7“(1—27“2—{—7“4)
y=z+y(l—22% -2 +2* + 2022 + ) 6=1

The circle r = 1 is an invariant set, but not an attracting set.

2.2.3 Attractors

Definition 2.15. An attracting set with a dense orbit is called an attractor.

Definition 2.16. A orbit I' € A is dense if for all ¢ > 0 and all points x € A there exists

some point x € I" such that |[x — X| < e. A dense orbit goes as close as wanted to any point
of A.

Example 2.5.

T = x—x?’,

y = -y
The interval I1 = {(z,0) | —1 < < 1} is an attracting set. But it is not an attractor, since
it does not have a dense orbit. The interval Iy == {(z,0) | —1 < z < 0} is an invariant

set, has a dense orbit, but it is not an attracting set. The only attractors are the two points
(—=1,0) and (1,0).
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Example 2.6.

o {;m sin( /) i i 8 210)
Fixed points at @ = 0, 2 = +1/n. The set A = [~1,1] is an attracting set, because the

neighbourhood U = [—1 — €,1 + €] for € > 0 is such that ¢ (U) C U Vt > 0 and ¢ (U) — A
as t — oo. The set A itself is not an attractor (there is no dense orbit). But each fixed point
x ==+1/(2n — 1) is an attractor. The point z = 0 is not an attracting set.

x

In two dimensions attracting sets are well characterised:

Theorem 2.17 (Poincaré-Bendixson theorem). Suppose E C R? is an open subset of the
plane and f € CY(E). If D C E is compact (i.e. closed and bounded) such that x(t) € D for
all t > 0 where x = £(x), then the orbit either is a limit cycle, approaches a limit cycle as
t — 00, or approaches an equilibrium point.

Another way to say this is that either w(¢¢(x0)) contains a critical point or w(ps(xg)) is a
periodic orbit. In three or more dimensions attractors can be much more exotic. The Lorenz
system has a strange attractor. An attractor is called strange if it has fractal dimension.
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2.3 Stability

As usual we consider a system x = f(x) with x € E CR", f € C}(E).
The simplest solutions are fixed points.

Definition 2.18. A fized point x¢ is a constant solution of the system, that is f(x¢) = 0.

We want a definition of the intuitive idea of stability: “solutions close to a given invariant
set remain close to that set for all time.”
Let Bs(x) denote the open ball of radius § around x, i.e.

Bs(xp) = {x € R" | |[x — x¢| < d}.

Definition 2.19. The fixed point x¢ is (Lyapunov) stable if V ¢ > 0, 3 § > 0 such that
V x € Bs(xp) and ¢t > 0, we have ¢;(x) € Be(xg). If X is not stable it is (Lyapunov) unstable.

This trajectory leaves Be(xp). Either
the point xg is unstable, or we need
to choose a smaller 4.

Stable: trajectories starting within
Bs(x0) stay within Be(x)

Example 2.7.

:t':
. Y = 4+ =¢
y=—4z

Then
w2y <ot = c<4® = P4y <40
Thus points starting in in Bs(0) stay inside Bss(0) so choose § = €/2.
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We also have the following stronger notion of stability:

Definition 2.20. The fixed point xq is asymptotically stable if (i) it is Lyapunov stable and
(ii) 3 0 > 0 such that ¢:(x) — x¢ as t — oo for all x € Bs(xp).

At first sight it might seem that we do not need (i) above, but to see that we do consider
the following example.

Example 2.8.

r=r(l—r)
. 0
0 = sin® -
sin” 5
All trajectories starting from x¢ # 0 tend to (1,0). But (1,0) is not stable (because trajec-
tories starting at # = € do a full loop and settle down at # = 2n—they do not stay close to

(1,0)).

Nz | | e
NS T NS =
RN = EeSNSES
- :‘§\;1 - g%é’ég‘:’i
= O S ==
/2///(\&&‘\?/\ Egj;\‘\\\§
i NN SN

locally near x =1, y =0

For linear systems x = Ax the origin x¢ = 0 is always a fixed point. If A is a semi-simple
matrix, we have

e x = 0 is asymptotically stable if Re(A) < 0, ¥V X\ € Spec(A4).
e x = 0 is stable if Re(A\) <0, V X & Spec(A4).

Remark 2.21. The first property remains true for non semi-simple A, but not the second
one (can you find a counter-example?).

2.4 Lyapunov functions

Example 2.9. Consider the system

Define
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Then, by the chain rule,

for all xg. Therefore
x—0 ast— o0

i.e. the origin is a globally asymptotically stable equilibrium point.

More generally consider the usual system
x = f(x)

with x € E C R*, f € CY(E). Assume that this system has a fixed point xo (so that
f(x0) = 0). Now consider a function V' (x) defined for x € E. The derivative of V along the
solution trajectory ¢;(x) at x is

Vi) = SV(ex) =TV =TV ()

Theorem 2.22. Let W be an open subset of E and xg € W. Suppose there exists a function
VW =R, VeCYW) satisfying V(xg) =0 and V(x) >0V x € W\ {xo}. Then,

(i) if V(x) <0V x € W\ {xq} then xq is stable;

(i) if V(x) <0V x € W\ {xo}, then xo is asymptotically stable;

(iii) if V(x) >0V x € W\ {xo}, then xq is unstable.

The function V is known as a Lyapunov function.

Proof. (Perko, p.131) (i) Given € > 0 sufficiently small that B.(x9) C W, let m, be the
minimum of the continuous function V on the compact set

Se = 0B.(x0) = {x € B" | |x — xo| = e}.

Since V(x) > 0 for x # xo we have m, > 0. Since V is continuous and V' (x¢) = 0 it follows
that there exists § > 0 such that |x — xg| < ¢ implies V(x) < me..

Now V(X) < 0 means that V is decreasing along trajectories of (2.1). Thus for all
& € Bs(x0) and t > 0 we have

V(pi(€o)) < V(&) < me.

This implies that ¢:(&o) € Be(x0) Vt. Indeed, suppose for a contradiction that 3¢; € R and
&o € Bs(xg) such that ¢, (&) € Se. Then, since m, is the minimum of V' on S, we must have
V(e (€0)) > me, contradicting the inequality above. Thus we have found the required § > 0
such that ¢ (&) — xo| < € for all & € Bs(x¢) and ¢t > 0.
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(ii) Now suppose that V(x) < 0 for all x € W \ {xg}, so that V is strictly decreasing
along trajectories. Let {tx} be any sequence with t; — oo as k — oo. We first show that if
v, (§o) = yo as k — oo then yo = xg. Since V is continuous V (¢, (§0)) — V(yo) as tp — oo.
Since V is strictly decreasing along trajectories, for any ¢,

V(9t(&o)) > V(yo)-

But it yo # xo then for s > 0 we have V(ps(yo0)) < V(yo) and by continuity it follows that
for fixed s and all y sufficiently close to yo we have V(ps(y)) < V(yo). Since ¢, (&0) — ¥o
we can choose y = ¢, (o) for t; sufficiently large to give

V(ps(y)) = V(esr, (§0)) < V(yo),

contradicting the inequality above.

Now consider the sequence ¢y, (§0). Since ¢y, (§0) € Be(x0) Vk and B(xp) is compact
there is a subsequence ¢y, (o) which converges to some point in Be(xg). We have just shown
that any convergent subsequence must converge to xg. It follows that the sequence ¢y, (&o)
itself must converge to xg, and therefore ¢;(&y) — xo as t — 0.

(iii) Let M be the maximum of V' (x) on the compact set B¢(xq). Since V is now strictly
increasing along trajectories, given any § > 0 and &y € Bs(x0),

V(et(&0)) > V(&) >0

]nf ‘/ J—

Then
V(pi(&o)) — V(&) > mt.

Therefore for t > M/m
V(pt(&o)) > mt > M,

i.e. pi(&o) lies outside B.(xy).
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Example 2.10. The damped nonlinear spring

T =y,

i) 3 .
mi+k(z+z°)+at =0, a >0, my = —k(z + %) — ay

(a) If @ = 0 [no damping] then the energy

is conserved. Take

Then

(i) V(0) = 0; (ii) V(x) > 0V x # 0; (iil) V(x) =0 ¥ x.

Thus V is a Lyapunov function and (0, 0) is stable (but not asymptotically stable).
Note that any system in the form

oW
ox

for some potential W (z) can be treated in a similar way. Such systems are said to be conser-
vative.
(b) When « # 0 we might try E again. However, we find

T =

E= —a?.

Thus E is enough to prove stability but not asymptotic stability, because E £ 0 Vy. Try

perturbing E as follows:
V = E + axy + bz

Then
. . d 9 9 . . .
VvV = E+& (axy—l—bx ) = —ay” + aty + axy + 2brx
k
= —ay*+ay® —a—(2*+ 2t — %xy + 2bxy.
m m
Choose

b= ——

2m
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to eliminate the xy term, giving
V=—(a—a)y’- aﬁ(ac2 + %)
- .

If @ > 0 is small enough then both coefficients are negative so that V < 0 for all (z,y) # (0,0).
Also if a is small enough then we still have V' > 0 for all (z,y) # (0,0). Thus (0,0) is
asymptotically stable.
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3 Local analysis

As usual, consider the nonlinear, autonomous, first-order system of differential equations
x = f(x) (3.1)

with vector field f : E C R® — R", f € C'(E). Suppose that X is a fixed point of the system,
that is f(xg) = 0. How can we determine the stability of this fixed point algorithmically?
The basic idea is to look at nearby solutions by expanding x close to xg, that is, we write

x =xg + &, (3.2)

where £ is small. Inserting (3.2) into (3.1) and Taylor expanding, remembering that f(xg) = 0
because xg is a fixed point, we have for each component i,

- of; o,
= filxo+ &) = fib) + 2 ST ()t o = 30 L gy
;7 ;7
We can write this succinctly as
& = Df(x0)¢ + O(|€[*) (3-3)
where Df(xg) is the Jacobian matriz associated with a vector field f:
Afi
Df = A4
preeol = 5] (3.4

Remark 3.1. Since xq is constant Df(xg) is a constant matrix.

The variational equations or linearised equations are given by the linear system obtained
by dropping the nonlinear terms in (3.3):

£ = Df(x0)¢ (3.5)

Equation (3.5) is a linear equation with a constant matrix. We know we can solve it and that
the stability of & = 0 is determined by Spec(Df(xg)). The central problem of local analysis
is to relate the stability of & = 0 for (3.5) to the stability of & = 0 for (3.1).

3.1 Stable manifold theorem

Before we talk about stable and unstable manifolds, we had better be clear about what we
mean by manifold.

Definition 3.2. Let X be a metric space and let A and B be subsets of X. A homeomorphism
of A onto B is a continuous one-to-one map h : A — B of A onto B such that h™' : B — A
is continuous. The sets A and B are called homeomorphic or topologically equivalent if there
is a homeomorphism of A onto B.
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Definition 3.3. An n-dimensional differentiable manifold, M, is a connected metric space
with an open covering {U,} (i.e. M =U,U,) such that

(1) for all a, U, is homeomorphic B;(0), the open unit ball in R", i.e. for all « there exists
a homeomorphism h,, : U — B1(0) of U onto B1(0);

(2) if Uy NUg # 0 and h, : Uy, — Bi(0), hg : Ug — B;(0) are homeomorphisms, then
h,(Us NUg) and hg(U, NUg) are subsets of R™ and the map

h =h,ohy' : hg(Uy NUp) = ha(Us N Up)

is differentiable and for all x € hg(U, NUpg), the Jacobian determinant det Dh(x) # 0.
The pair (Uy, hy) is called a chart for the manifold M, and the set of all charts is called

an atlas for M.
/ U, @ Ug\

B1(0) h=hgohg' B1(0)

N/

3.1.1 Basic idea in R?

Consider the system

T = f(x,
. f(z,y) (3.6)
y=g(z,y)
and assume without loss of generality that x = y = 0 is a fixed point.
The linearised system is
= 0,£(0,0)¢ + 8, £(0,0
€= 0uf (0,006 +9,.£(0, 00 .

Suppose that the eigenvalues of the Jacobian matrix

o 8:vf(07 0) 0, f(()?O)
DEO =1 5.4(0,0) 9,9(0,0) (3:8)
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are real (but non-vanishing) with opposite sign. Then the linear system has a one-dimensional
stable linear subspace, and a one-dimensional unstable linear subspace.

The nonlinear system has two trajectories which converge to the fixed point for large
positive time, and these curves are tangent to the stable linear subspace at the origin. They
form the stable manifold. It also has two trajectories which converge to the fixed point for
large negative time, and these curves are tangent to the unstable linear subspace at the origin.
These form the unstable manifold.

E*(0

W#(0)

Y

WU (0)

E“(0
Explicitly, for this system, we define the stable and unstable manifolds as
W4(0) = {(z,y) € R? | g(x,y) — 0 as t — oo} (3.9)
W*(0) = {(z,y) € R* | gi(x,y) = 0 as t = —oo} (3.10)
More generally we have

Theorem 3.4 (Stable manifold). Let E be an open subset of R"™ containing xo and let @ :
E — E be the flow of x = f(x). Suppose that the spectrum of Df(xg) is composed of k
eigenvalues with positive real parts and (n — k) eigenvalues with negative real parts.

Then,

e there exists, in a neighbourhood of Xo, a (n — k)-dimensional manifold W} (xo) tangent
to B such that ¥t >0, @i(Wp ) C WS and Vx € W} ., pi(x) = X0 as t — oo.

e there exists, in a neighbourhood of xo, a k-dimensional manifold W} (xo) tangent to
E" such that Vt <0, (W) C Wi, and Vx € Wk, ¢i(x) = xg as t — —o0.

Moreover, W . and W}, are as smooth as f.

The existence of local stable and and unstable manifolds allows us to define global stable
and unstable manifolds as follows:

W*(x0) = [ ¢t (Wike(x0)) W (xo0) = [ 1 (Wike(x0))

<0 >0

Example 3.1.

T=—-x—Yy

\
A

(0,0) fixed point, Df(0) = { -1 ]
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W . is analytic (since f is analytic) and tangent to £ so is of the form
oo
Y= Z a;z’ with ag = a1 = 0.
i=0

Locally y = asz? + O(z?). Can we find as? Differentiating gives
y = 2agxi + O(ix?)

= y+ a2t = 2a9x(—x — y2) + 0(333)
= agx? + 22 = 2ax(—1x) + O(z?)
= as +1=—2a9 = a2:—1/3

Thus

y=—5 +0@").

A similar calculation for W} _ gives

y2

What about the global manifold? Here we are in luck because we observe that J = 3zy-+1y°+23
is conserved:
J = 3iy+3zy+ 3yy + 322
= “3y(z+y°) +3a(y +a?) + 3y%(y + 2°) = 3% (z +y?)
= —3yx — 3y> + 3zy + 327 + 3y° + 327y — 323 — 3%y’
= 0.
Thus the stable and unstable manifolds must both have J = 0. Maclaurin trisectrix (1742).

5
loc

~
~

o
)
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Remark 3.5. W5 and W* are not solution curves (they are unions of curves).
Remark 3.6. If f is analytic, it follows that W¢ and W* are also analytic.

Remark 3.7. If WSNWY # (), then W N W is a homoclinic manifold. The property of the
homoclinic manifold is that any initial condition on the manifold ends up asymptotically for
negative and positive time on the same fixed point.

3.1.2 Hyperbolicity and stability
Definition 3.8. If Re()\) # 0 for all A € Spec(Df(xq)), then xq is an hyperbolic fized point.

The stability of hyperbolic fixed points is fully determined by the linearisation of the
vector field around the fixed point:

Theorem 3.9. If Re(\) <0 for all A € Spec(Df(xq)), then x¢ is asymptotically stable.
If there exists A\ € Spec(Df(x¢)) such that Re(\) > 0, then xq is unstable.

To illustrate the necessity of hyperbolicity consider the following example

Example 3.2. The nonlinearly damped harmonic oscillator

itex?i+r =0 = z z ?i’x — ex?y = Df(0) = [ _01 (1] ]
(NN ==\
(NN 7=\
@) 1o
= S, > R
WS T )
N\==7 N7
NS NS

e=0 e>0

The linearised system is stable, but gives no information on the stability of the nonlinear
system. We try the Lyapunov function (the energy of the linear system)

2 2
Y x
E==+—
2 * 2
which gives '
E = 76m2y2

which as a Lyapunov function is enough for stability but not asymptotic stability. If we try

2 2
Xz
L:y?—f‘?'i‘@g’l}gy—ﬁ:]}yg
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we find
L = yy+zi+ aiy+azy = —oxt — By* — (e — 3o — 38)x?y? — avea®y + 3Bexy>.

The first three terms are of the right sign if & and g are small enough and ¢ > 0. We need to
group the remaining terms with terms that dominate them. We see

. 3Bexy
L = —ari(1 Byt — (e — 30 — 2,2 (10 29
az®(1+ exy) — By* — (e — 3o — 3B)x“y +€_3a_35 <0

for small enough (z,y) # (0,0). Thus the origin is asymptotically stable for € > 0.
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3.2 The centre manifold

Recall the construction of the stable and unstable manifolds: they are defined locally as
the unique manifolds tangent to the stable and unstable linear subspaces of the linearised
equations. Then the global stable and unstable manifolds are defined as the evolution in
(negative and positive respectively) time of these local manifolds.

W#t defined as the set of points such that x — xg as t — Fo0.

What happens if one of the eigenvalues of Df(xg) has zero real part? In this case, the
linearised equations have a non-empty centre subspace.

Theorem 3.10 (Centre manifold). Let ¢ : E C R™ — E be the flow of x = f(x) with fized
point xg where f € C"(E). Suppose that the spectrum of Df(x¢) has k eigenvalues with zero
real part and (n—k) eigenvalues with non-zero real part. Then there exists, in a neighbourhood
of xo a k-dimensional manifold W}, (xo) that is

(i) tangent to E° at Xo;
(ii) of class C";
(iii) invariant under the flow.

The problem is that the centre manifold may not be unique, as shown by the following
example.

Example 3.3 (Perko p.116).

1
2 _
= r=——F
x x N 1/.%'0—t - y:yoe—l/xoel/w
- y = yoe "
Linearised system is
E*
Y
z=0
EL‘
=Y
A

Every single curve y = Ce~'/% is tangent to E° at (0,0). Any solution curve to the left of
the origin, patched with the positive xz-axis at the origin, would give a one-dimensional centre
manifold of class C'*°. However, there is only one curve for which the centre manifold would
be analytic (the same smoothness as f). This is the curve corresponding to C' = 0, which
gives the z-axis. Often we are interested in the smoothest centre manifold.
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We can combine the two manifold theorems.

Theorem 3.11. Given an open subset E C R, a vector field f € C"(E), r > 1, with a fized
point Xg, and a set of eigenvalues A = Spec (Df(xg)), we have

o kg eigenvalues A € A with Re(\) < 0, with linear subspace E?,
o ky eigenvalues X € A with Re(\) > 0, with linear subspace E,
o k. eigenvalues A € A with Re(\) =0, with linear subspace E°,

with ks + ky + k. = n. Then there exist
e a unique ks-dimensional manifold W = of class C" tangent to E° at xq,
o a unique ky-dimensional manifold W} of class C" tangent to E* at xq,
e a k.-dimensional manifold Wi, . of class C" tangent to E° at Xq.

Furthermore W, ., Wit and W{ . are invariant under the flow of x = f(x).

3.3 Reduction to the centre manifold

Consider again a fixed point xg. If the unstable manifold is non-empty, the fixed point is
unstable. Suppose the unstable manifold is empty and the system has both a non-empty
stable and centre manifold. What is the stability of a fixed point in this case?
Basic idea: The stability is governed by the dynamics on the centre manifold.

Without loss of generality we assume that the original system has been brought, by a
linear transformation, to the canonical form:

x=Ax+f(x,y), x € RAmW*
. o) o (3.11)
y = By +g(x,y) y € RT™
where (x9,y0) = (0,0) is a fixed point (i.e. £(0,0) = 0 and g(0,0) = 0) and
Re(A)=0 Ve S A),
(N pec(4) 512)

Re(A) <0 V A € Spec(B).

Note that we also assume that f and g are nonlinear at the origin (the Jacobian 0(f, g)/0(x,y)
vanishes at (0,0)).

The variables x define the centre linear subspace. The main idea is to obtain a description
of the centre manifold in terms of the variables x. We posit that the centre manifold may be
described by

y = h(x), (3.13)

and we look for a suitable function h(x). Differentiating gives
y = Dh(x)x. (3.14)
Hence

x = Ax + f(x, h(x)),

y = Dh(x)x = Bh(x) + g(x, h(x)). (3.15)
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Figure 3.1: Trajectories are attracted exponentially to W¢ = dynamics on W€ determines
the stability.

Substituting for x from the first equation into the second equation gives an equation for h(x):
Dh(x) (Ax + f(x,h(x))) = Bh(x) + g(x, h(x)). (3.16)
Close to the origin we can solve it by expanding h in a Taylor series:

|m|=d
h= 3 hux™+O(x[™), (3.17)

m, |m|=2
and solving for the coefficients hyy,.

Remark 3.12. The Taylor series starts at [m| = 2 because we know the centre manifold is
tangent to the centre linear subspace, which is given by y = 0. Thus the derivatives of h
must all be zero at x = 0.

Remark 3.13. In (3.17) we are using the multinomial formalism for a vector x = (x1, ..., xy)
and postive integer vector m = (my,...,my):

X =[] =" (3.18)

Once h is known, the first of equations (3.15) gives the dynamics on the centre manifold:

Theorem 3.14. The dynamics of (3.11) on its centre manifold W€ at the origin is, for (x,y)
close enough to the origin, given by the dynamics of

x = Ax + f(x, h(x)).

Example 3.4.

i =%y — 2 T 0 0 T x2y — x°
. 2 = . = . + 2 .
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FEigenvalues and linear subspaces:

v x=([1]) ame xe=([G]) E(

On the centre linear subspace y = 0. Putting y = 0 gives & = —2°. Does this mean that the
origin is stable?
Denote the centre manifold by

y = h(zx) = hoa® + hga® + - - = Dh(z) = 2hox® + 3hax® + -+ .
Then (3.16) is
(2hoa?® + 3hga® + -+ ) (2 (hoa® + ha® + -+ ) — 2°) = —(hox® + hga® + -+ ) + 2”.
Equating coefficients of powers of = gives
he =1, hs =0, = h =22 + O(zh).
On the centre manifold the dynamics is given by
i = a22h(z) — 2% = 2* — 25 + O(29).

Thus the origin is unstable (the dominant term x* is positive for positive ).

/;'/ 717y

/i

Close enough to the origin, the dynamics in the full space is well approximated by the
dynamics on the centre manifold:

Theorem 3.15 (Shadowing). Let (x0,y0) be close enough to the origin, and (x(t),y(t)) be
the solution of (3.15) starting at (Xo,yo0). Then there exists a solution x(t) on the centre
manifold such that

x(t)

y(t)

x(t) + O(e™ ),
h(x(t)) + O(e™),

(3.19)

for some constant v > 0.
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3.3.1 The step-by-step method

We start with a system
z = F(z), z € RP. (3.20)

Assume that it has a fixed point at zo (i.e. F(z9) = 0), and that M = DF(zg) has n > 1
eigenvalues with zero real parts and m > 1 eigenvalues with negative real parts (n +m = p),
and no eigenvalue with positive real part (otherwise the fixed point is unstable).

Step 1: Reduction to a canonical form: Introduce the new variables

z =279+ C7, (3.21)

ctMC = [%%] : (3.22)

where the matrices A and B of respective dimension n and m are such that

where C' is chosen such that

Re(A) =0 V XA € Spec(A),

Re(A) <0 V A € Spec(B). (3:23)
After the change of variable, the new system in the variable z = (x,y) is
>:< = Ax+f(x,y), x e R" (3.24)
y = By +g(x,y) y €R™
and (0,0) is a fixed point.
Step 2: Reduction to the centre manifold: We want to solve
Dh(x) (Ax + £(x, h(x))) = Bh(x) + g(x, h(x)). (3.25)
Close to the origin we expand h in Taylor series:
|m|=d
h = Z hx™ + O(|x|*H), (3.26)
m, |m|=2

We first choose d = 2. Inserting this expansion into (3.25) and expanding g in power series,
we obtain a linear set of equations for hy,. If there is a non-trivial solution to this set of linear
equations, we have the first nonlinear approximation of the centre-manifold. Otherwise, we
increase the value of d until we find a non-trivial solution.

Step 3: Dynamics on the centre manifold: We insert the first non-zero approximation
h= > hmx™, (3.27)

into

x = Ax + f(x, h(x)). (3.28)
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and we obtain the polynomial system:
|m|=d

k=Ax+ Y fux™+O(x["). (3.29)

m, |m|=2

This is still a nonlinear system but of reduced dimension n < p. The hope is that it is
sufficiently simple to be analysed by elementary means (direct integration, Lyapunov func-
tions,...).

Example 3.5.

. 2 2 2

Z21==(—21 — 22+ 23+ 27 — 25 — 25 — 4z123), 1 11
2 —3 ~3 3

Zo = 21 + 23 + 2122 — 2923, = M = 1 0 1
1 1 _1 _1

. 2 2 2

zZ3 = 5(21 — 29 — Z3 + Z% +Z§ — Zg +42123)

det(M =X =0 = -XN-X-A-1=—-1+N1+X)=0 = A= —1,4i.

1/2 1/2 1/2
)\1:—1, W1 = 0 s )\221, W9 = —i s /\3——1 W3 = i ,
~1/2 1/2 1/2
So
1/2 0 1/2 T 21 1 0 1 21
P=| 0 1 0 = zo | =P ' m | =]01 29
1/2 0 —1/2 Y 23 1 0 -1 23
Then
i1 = A +iz=—2+ 2 — 25 = —x0 + 11y,
Ty = Z9 =121+ 23+ 2122 — 2223 = 11 + T2V,
Yy = 2z — 23 = —21+Z3—22 42123——y—:c§—1:1—|—y

So system in canonical form is

Ty = —x2 + 21Y, 1 Ty 1Y
T9 = 1 + X2y, = T | = x2 | + 2y
. 2 9., .2
y=—y—ai—a3+y° Y Y Tty

Writing h = hgox% + h11x122 + hogx% + .- gives
Dh = [2hgox1 + hi1x2, hiix1 + 2heoxa] +

—x9 + xl(hgox% + h11x122 + hogx%)

Dh A f(x,h = [2h h , h 2h
(x) (Ax + f(x,h(x))) [2hgoz1 + h11z2, hi121 + 2ho2x2] xl+x2(h20x%+h11x1m2+h02x%)

=  —2hggx1T9 — hi125 4 hi123 4 2hgpw 1T + - - -
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Bh(x) +g(x,h(x)) = —(hoox? + hiz120 + hogal) — 22 — 22 + (hoox? + hiyz120 + hogad)? + - - -

= —(hao + 1)2? — hyyz1wa — (hog + 1)x3 + - -
Equating powers of 2, x129 and 3 gives
hi1 = —hgo — 1, 2hoo — 2hsg = —h11, —hi1 = —hoy — 1.
Solving gives
hao=—1, h;1 =0, hgp=-1 =  hlz,2) =—22 — 2%+ 0(x)
The dynamics on the centre manifold is then given by

T = —x9— xi” — a:lx% + O(]x|4),

Ty = 331—33237%—1’%‘*'0("(‘4)

Writing 1 = rcos @, zo = rsinf gives
= —r® 4+ O0(r")
so that the origin is stable.

Remark 3.16. We could do this without switching to canonical variables, so long as we made
sure the Taylor expansion of the centre manifold agreed with the centre subspace at leading
order, i.e. we could set

2 2
z3 = h(zl, 22) = Z1 + hg()zl + h112122 + h0222 + .- 5
or
=h _ 2 2
21 = h(z2, 23) = 23 + ag023 + 112223 + a5 + - - - .

However, we would need to expand h to O({z1, 22}3) to capture the dynamics. In canoni-
cal variables we only needed to expand to O({x1,z2}?) because the right-hand side of the
equations for x; and x5 involve y multiplied by a linear term in x; or xo.
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3.4 Mappings
We are interested in iterative maps, characterised by discrete iterations of the form
Xn+1 = G(xp), (3.30)
where x € £ C R™. Equivalently, we write
x — G(x), (3.31)
We note that
x1 = G(xg), x2=G(x1)=GP(xq), ..., xn=G"(xg). (3.32)

where G(™(x9) = G(G(...G(xp))). If G™! exists then the orbits are unique (i.e. no two
different starting points can give the same finishing point) and we can go either forwards
or backwards. Otherwise, more generally, we can look at systems for which only forward
dynamics is defined. A point xg is a fixed point for the system if it is mapped onto itself:

x0 = G(x0). (3.33)
3.4.1 Linear maps
In the linear case:
Xpi1 = Bxny, BeM,[R), necZ", x¢eR" (3.34)

The map sends points to points. If 0 € Spec(B), then B can be inverted and orbits are unique
(i.e. no two different starting points can give the same finishing point).

X1 = BXQ

X0 X9 = BX1

The origin is always a fixed point. The stability of the origin is determined by the spectral
properties of B. We write the eigenvalues and eigenvectors of B as Bw; = A\jw; (for j =
1,...,n) where

Aj =a; +1ib;, aj, b; € R, w; =u; +iv;, uj, vj e R™.
Definition 3.17. The stable, unstable, centre linear subspaces are defined respectively as

e E° = Span(uy, v, such that |A\;| < 1) (stable linear subspace)
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e E° = Span(uy, v, such that |[A\;| =1) (centre linear subspace)
e E" = Span(uj, v; such that [A\;| > 1) (unstable linear subspace)

The stable linear subspace defines contraction mappings: Let x¢g € E°. Then there exists
a < 1, ¢ > 0 such that
x| < ca|xg] (3.35)

There is a natural correspondence between linear flows and linear maps.
Every linear flow defines a linear map. Consider a linear flow with matrix A. Fix ¢ and define
B = ¢4, then
0 1 Xp — Bxy,. (3.36)

However, the converse is not true (can you give a counter-example?).

3.4.2 Stability of maps
A fixed point for a mapping is a point xg € R, such that G(xg) = xo.

Definition 3.18. A fixed point x¢ € R" is stable if Ve > 0, 36 > 0 such that Vx € Bs(xg),
G (x) € Bc(xp) for all n € Z+.

Definition 3.19. A fixed point x¢g € R™ is asymptotically stable if it is stable and 39 > 0
such that Vx € Bs(xo)
G (x) = xq as n — oo.

3.4.3 Stable and unstable manifolds

Theorem 3.20 (Stable and unstable manifold). For E be an open subset of R™ containing
X consider the iterative map Xp4+1 = G(x,) with fized point xo, where G : E — E and
G~ exists on E. Suppose the linear stable subspace has dimension ng and the linear unstable
subspace has dimension n,. Then

e there exists, in a neighbourhood of Xy, an ns-dimensional manifold W;, (xo) tangent to
E® such that G(W{,) C W, and ¥x € Wi, G (x) = xq as n — oo.

e there exists, in a neighbourhood of xg, a ny,-dimensional manifold W} (xo) tangent to
E* such that W}, C G(W},) and ¥x € Wi, G (x) = xq as n — —o0.

Moreover, W} . and W} are as smooth as G.

By extension, we define the stable and unstable manifold:

We(xo) = | G™ (W (x0)) (3.37)
n<0

W(x) = | G™ (Wit.(x0)) (3.38)
n>0

Remark 3.21. Stable and unstable manifolds are not trajectories but union of trajectories.



B5.6 Nonlinear Systems Draft date: 25 January 2020 3-17

Example 3.6 (Cat map). Let T2 = R?/Z? be the two-dimensional torus (i.e. a point in 72 is
an equivalence class of points (x,y) € R? under the equivalence relation (z,y) ~ (z+n,y+m)
for n, m € Z). Any matrix B with integer entries and unit determinant (i.e. in SL(2,7))
preserves equivalence classes in R?, so induces a map B : T? — T2. Consider the induced

map given by
11
p-1 1]

Eigenvalues and eigenvectors:

AM=-B+V5)>1 Af:;3—¢®<1

—1+v/5 —1-
W1 = % W9 = i

Thus there is a one-dimensional stable manifold and a one-dimensional unstable manifold.
The stable and unstable manifolds densely fill the torus (rational points are sent to rational
points, while the slope eigenfunction is irrational, so the curve can never close).

What happens to rational points?

S

1/2 0 1/2 1/2
Xo = 1/2 = X1 = 1/2 = X9 = 0 = X3 = 1/2
0 0 0 0
A periodic orbit of period 3.
number of orbits of period 2 : 4
number of orbits of period 3 : 15
number of orbits of period 4 : 44
number of orbits of period 5 : 120

number of orbits of period 6 : 319
number of orbits of period 7 : 840

There are infinitely many periodic orbits. The set of such points also dense in T2.

1.0

08 \ 08
06 06
x

04 () 04 3
02 02

11 Co

HE)
\ - ‘)

0.0 0ot “xy

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

1.0

stable manifold unstable manifold
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3.4.4 Stability of periodic orbits

For a continuous dynamical system x = f(x), a periodic orbit I" is a closed trajectory in phase
space £ C R™.

Let d(x,I") be the distance between a point x and I'. Given a closed curve we can define
a neighbourhood of size § as the set of points

Us(D) = {x € E | d(x,T) < 6} (3.39)

Definition 3.22. A periodic orbit T' is Lyapunov stable if Ve > 0, 36 > 0 such that ¢(x) €
Ue(T') for all t > 0 and x € Us .

Definition 3.23. A periodic orbit I' is asymptotically stable if it is Lyapunov stable and
36 > 0 such that d(y(x),I') = 0 for all ¢ > 0 and x € Us .

3.4.5 Poincaré map

One way to study periodic orbits is via the so-called Poincaré map, which replaces the con-
tinuous flow by a lower-dimensional discrete map. The idea is quite simple: if I" is a periodic
orbit of the system

x = f(x) (3.40)

through the point x¢ and ¥ is a hyperplane perpendicular to I' at xg then for any point x
sufficiently close to xg the solution ¢;(x) of (3.40) through x at ¢ = 0 will cross ¥ again at a
point P(x) near xg. The map

x — P(x), (3.41)

is called the Poincaré map.

The idea can be generalised to an (m — 1)-dimensional manifold ¥ [where x € R"™] which
does not need to be perpendicular to I' but it must not be tangential, i.e. it must be transver-
sal, so that

n - f(x¢) > 0.

Remark 3.24. This intersection point always exists because if x( lies on a perioric orbit then
and the transversality condition is satisfied then it can be shown that

36 > 0 such that Vx € Bs(xo) 3T (x) such that @7 ) (x) € 2.
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Example 3.7.

, 1 ~1/2
r=r(l—r) r_[1+<2—1>e_2t]
. j 7’0
0=t+0

Choose ¥ to be the line § = 6y. Then py = (r9,0p) € X. Transversality is satisfied because
n-f =1 for all 7,  (the normal is in the #-direction, and § = 1). We see that for any initial
condition (r,6y) the next intersection occurs at t = 27. Thus

P(r) = [1 + (:2 — 1) e—ﬂ _1/2.

There is a fixed point at » = 1 because P(1) = 1. This corresponds to the periodic orbit.
We can study the stability of the periodic orbit by studying the stability of this fixed point.

Since
Pl)y=ec" <1

the fixed point (and hence the periodic orbit) is stable.

Y
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4 Bifurcations

4.1 Local bifurcations for vector fields
Consider the nonlinear, autonomous, first-order system of differential equations
x =f(x, ) where xe€ ECR", peR? (4.1)

where p = (p1,- -+, pp) is a vector of parameters.
Questions we might be interested in include:
How does the dynamics change when the parameters are varied?
What are the special values where qualitative changes occur?
Can the possible changes be classified?
Can they be obtained algorithmically?
What do we mean by “special values”? We are interested in parameter values for which
the system is not structurally stable.

Definition 4.1 (Topological equivalence). Two vector fields f and g and associated flows
(%) and 4(x) are topologically equivalent if 3 a homeomorphism (1-1, continuous, with
continuous inverse) h : R” — R™ | and a map 7(¢,x) — R, strictly increasing on ¢, such that,

T(t+5,%) =7(s,%) + 7(L,ps(x)),  and Py (h(x)) = h(pi(x)).

Definition 4.2 (Structural stability). The vector field f is structurally stable if for all contin-
uously differentiable vector fields v there exists €, > 0 such that f is topologically equivalent
tof +eviorall ) <e<e,.

If we change parameters for a given f(x, i) then we will have structural stability in general
except for certain special values of p (i.e. certain surfaces in p-space).

Definition 4.3. We define a bifurcation point p. as a point in parameter space where f is
not structurally stable. A bifurcation (change in structure of the solution) will occur when
the parameters are varied to pass through these points. The bifurcation set is the locus in
p-space of bifurcation values. If we plot, for example, the amplitude of the fixed points and
periodic orbits as the parameters are varied this is called a bifurcation diagram.

Example 4.1 (Transcritical bifurcation). Take p =n = 1 and consider the system
&= pr — 2 (4.2)

Equilibrium points are x = 0 and = = pu.



4-2  OCIAM Mathematical Institute University of Oxford

yARInin

The “Jacobian” is Df = p — 2z with eigenvalue A = p — 2x. Thus = = 0 is stable for
@ < 0 but unstable for g > 0. Similarly x = p is unstable for p < 0 but stable for p > 0.
There is a switch in stability as the two solution branches cross.

Remark 4.4. Loss of structural stability at the bifurcation point p = 0 here is indicated by
the change in stability of the fixed points. Bifurcation points for fixed points can be identified
as places where the number or stability of fixed points changes.

We consider the problem of determining bifurcations at fixed points. Take p € R (p = 1).
Then the fixed points are given by the solution of

f(x,p) =0.

For values of u for which a solution can be found, the solution defines a branch of equilibria
x = x(u). Along this branch, define the matrix

D(r) = Dt () ) -

Suppose that there is a value pg for which D(u) has only eigenvalues with non-zero real parts
(i.e. the fixed point is hyperbolic for that value). Then, D(u) is invertible and the local
branch of equilibria can be continued locally. We increase (or decrease) p up to a critical
bifurcation value p. where D(u) is not invertible. At this point, the branch of equilibria is
non-smooth.

Example 4.2 (Saddle-node or fold bifurcation). Consider the system

:ic:u—xQ

Here the equilibrium points are z = +u'/2 which exist only for x> 0. The Jacobian Df =
—2x. At the critical point Df = F2u'/2, and this vanishes when g = 0, which is therefore
the bifurcation point. For a one dimensional system there is just one eigenvalue A and it is
equal to Df. Thus z = +u'/2 is stable and z = —p!/? is unstable.
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Example 4.3 (Supercritical pitchfork bifurcation). Consider the system

&= px —a°

The equilibrium points are z = 0 and z = +p/2. For @ > 0 there are three equilibrium
points, while for ;# < 0 there is only one. The Jacobian Df = u — 3z2. For the equilibrium
value x = 0, Df = p. This is zero when p = 0 which is the bifurcation point. For x = 0,
A < 0 when g < 0and A > 0 when g > 0. Thus the equilibrium point = = 0 is stable for
1 < 0 and unstable for g > 0.

For z = +u'/2, A = Df = —2u. Since these branches only exist for 1 > 0 they have A < 0
and are therefore stable.

Example 4.4 (Subcritical pitchfork bifurcation). Consider the system

T = —px+ z3

The equilibrium points are 2 = 0 and = +u'/2. For g > 0 there are three equilibrium
points, while for p < 0 there is only one. The Jacobian Df = —u + 322. For the equilibrium
value x = 0, Df = —p. This is zero when p = 0 which is the bifurcation point. For x = 0,
A >0 when g < 0 and A < 0 when g > 0. Thus the equilibrium point = 0 is unstable for
u < 0 and stable for g > 0.

For « = +u'/2, A = Df = 2u. Since these branches only exist for > 0 they have A > 0
and are therefore unstable.

RN

1 p

supercritical pitchfork subcritical pitchfork
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Let us first introducte the notion of the co-dimension of a bifurcation. As an example
consider the case m =1, p = 3:

t = f(z,p) where z€R, peR3 (4.3)
Let X be the bifurcation set, i.e.
Y ={pu R | Dyf(x) =0 for some x with f(z, ) = 0}.

Since 3 is defined by one constraint on p generically it will be a two-dimensional manifold in
three dimensional p-space. A generic line in pu-space will therefore intersect X in a point.

3

Thus, following this line, we have a system
y=9A), AeR (4.4)

which has the same bifurcation behaviour as (4.3) but a single parameter. We say the bifur-
cation has co-dimension 1 and the equation (4.4) is its normal form.

Example 4.5 (Two parameter family). Consider the system
&= pq + pox — 22 (4.5)

If we set pa = 0 we see there is a saddle-node bifurcation at p; = 0. If we set p; = 0 then we
see there is a transcritical bifurcation at pus = 0. In general the fixed points are

v — pa + /5 + 4
2

provided u% +4p; > 0.

There is a single (non-hyperbolic) fixedpoint when ,u% + 41 = 0, and no fixed points if
p3 + 4p1 < 0. Thus the bifurcation set is the parabola u3 + 4u1 = 0. Along a curve passing
through any point on the parabola we will see a saddle-node bifurcation. To see a transcritical
bifurcation we need to follow a curve in parameter space which is tangential to the parabola.
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Example 4.6 (General co-dimension 1 problem in 1 dimension). Consider the system

&= f(z,p).
Suppose that = 0 is an equilibrium point and that there is a bifurcation at 4 = 0. This
implies
£(0,0) = f(0,0) = 0.
Thus, Taylor expanding f about (0,0) gives

2 2

. T 1
l‘zufu+§fxw+$/ﬁfw+?fw+---

where all derivatives are evaluated at (0,0). Thus, locally near (0,0),

2
&= (ufy+ O) + @hfay + T fru+ O(| (2, 1) ).

Generically this is of the form (4.5) and can therefore be reduced to the standard saddle-node
bifurcation. However, there are some important special cases:

1.  If the system is such that f(0, ) = 0 then aﬁf(O, 0) = 0 for all £ and we have instead

2
. T
T = l',ltfa;p + ?fzm + O(|(l‘mu)|3)7

which is in the standard form for a transcritical bifurcation.

2. If the system has reflectional symmetry (i.e. the trajectories are invariant under the
transformation x — —x) then simple bifurcations are pitchforks. For the equations to have
this symmetry f must be odd in x, and therefore the Taylor expansion instead gives

b= (1o + OU2) +2° (o O0) ) + 0%,

which is the general form for a pitchfork bifurcation.

The saddle-node bifurcation is robust under small changes of parameters as shown above,
but transcritical and pitchfork bifurcations depend on the vanishing of terms, and therefore
change under small perturbations.

:b:e+ux—x2
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Consider now the situation where x = f(x, ) has a non-hyperbolic fixed point at the
origin for some value pg of p. Let Aq,..., An be the eigenvalues of Dyf at the bifurcation
point (x(1p), o). There are two generic cases:

(1)

e [4f3]

A1 =0, Re()\;) #0, j > 1. This is a simple or steady-state bifurcation, and is essentially
the same as the one dimensional examples we have seen. We will show this shortly when
we discuss the extended centre manifold.

0 —w|O0
Dyf=|w 010
0 0 |A

A2 = tiw, Re(\;) # 0, j > 2. This is a Hopf or oscillatory bifurcation, and it leads to
the growth of oscillations. We will see an example later.



B5.6 Nonlinear Systems Draft date: 25 January 2020 4-7
Im(\)

It is possible to have two or more zero eigenvalues:

0 0|0 0 1|0
Dyf=10 0|0 Dyf=10 0|0
0 0/A 0 0|A
(double-zero bifurcation) (Takens-Bogdanov bifurcation)

but these are non seen generically as they need two parameters to take one special values.
Note that there are extra technical requirements on the way the eigenvalues change with u
(e.g. for (i) we need d\1/du # 0 at p = pp).

4.2 The extended centre manifold

Consider the general one-parameter system (we are looking at co-dimension 1 bifurcations)
z =F(z, ), zeR", [peR (4.6)

Assume that for i = fi., there is a non-hyperbolic fixed point z. so that the matrix M = DF(z,.)
has eigenvalues with zero real part. We use the change of variables

z = z. + (%, po= = fc

CcMC = {%H] . (4.7)

where the matrices A and B of respective dimension n. and ns + n, are such that

where C' is chosen such that

Re(A\) =0 V X e Spec(A), Re(A) #0 V¥ A € Spec(B). (4.8)
After the change of variables, the new system in the variable z = (x,y) is

x = Ax +f(x,y, 1), x € R"

4.9
y = By +g(x,y,1) y € Rt (4.9)

and (x,y) = (0,0) is a fixed point for 4 = 0. The main idea now is to extend the centre
manifold to include the parameter.

x = Ax + f(x,y, p), x € R"
y = By +g(x,y, 1) y € R Fmu (4.10)
p=0
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We can view this system as a dynamical system in the extended phase space in m = ngs +
Ny + ne + 1 dimensions.

Remark 4.5. When we first considered centre manifolds we were only interested in fixed
points without unstable manifolds. This time the unstable manifold is not empty and the
vector y denotes variables both in the stable and the unstable manifolds.

Remark 4.6. The centre manifold has now dimension n. + 1 and is parameterised by the
vector (x, ).

We can now proceed as before and look for a center manifold of the form
y = h(x, p). (4.11)
Once this is known, we can write the dynamics on the extended centre manifold as:
x = Ax + f(x, h(x, 1), 1), i =0. (4.12)

This equation captures the relevant part of the bifurcation. In the case (i) above n. = 1 and
equation (4.12) is one-dimensional as promised. In the case (ii) n. = 2 and two-dimensional.

Example 4.7. Consider the system
&=px+y) - (x+y)°
j=-y—px+y) +(@=+y)
The fixed points are (u,0) and (0,0). At the origin

—-1+1+4+4
M= * © - )\1:M7 A
—u —1—p 2

1=/ +4p
-
As expected (because the two fixed points coincide) A; = 0 when p = 0. The eigenvector w;
when (z,y, ) = (0,0,0) is

1

0

0

so that the system is already in the form (4.7) (phew!) if we write the generalised vector in
the order (x, u,y) (there is a second zero eigenvalue associated with g = 0). Thus

i 00 0 T wz+y) — (z+y)?

L l=100 0 wo| + 0

y 00 -1]1]y —plz +y) +(z +y)°

The centre manifold is given by y = h(z, ). Writing h = hoox? 4+ h11opu + hoop? + - - - gives

Dh = [2hoox + hi1pt, hiiz + 2hogp] + -+ .

p(x+y) — (z+y)?
0

= (2hgox + h11p) (,u(:c +y)— (x+ y)Q) 4.

Dh(x) (Ax + f(x,h(x))) = [2heoz + hiipt, i1z + 2hoos] T
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— -0 > o < <0

—-——& ——=—— <0

—=—0 >0 <— <0

Figure 4.1: The dynamics on the centre manifold

J Aﬁ )
\\\F’f’{'\\\\

\

Figure 4.2: The dynamics in the full space (x,y) for p < 0 (left) and p > 0 (right).

Bh(x) + g(x,h(x)) = - (h20x2 + hiiep + hog,u2)
— (x4 (haoz® + hinzp + hoop® + -+ ) + (z + (hooz® + hirzp + hoop® + -+ )
= —hoor® — hiiwp — hoop® — pr + 2> + -+ -

2

Equating powers of x2, zu and pu? gives

hoo =1, h1p = —1, hg2 = 0.
Thus the cenre manifold is given locally by

y =2 —zp+ 0?22, xp?, 1?).
The dynamics on the centre manifold is then given by

&= px — 2% + O(xp?, 2p, 22, 1%).

Thus the bifurcation is transcritical.
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4.2.1 Perturbation theory

Example 4.8 (Example 4.7 revisited). Consider again the system

& =px+y) - (z+y)

j=-y—px+y) +@+y)’ (#13)

Having identified ¢ = 0 as the bifurcation point and (z,y) = (0,0) as the equilibrium point
we use perturbation theory to look at what happens close to the bifurcation point and close
to the critical point. We quantify this closeness by the small parameter €, and expand

$=61¢1+62.’172+"‘ ,

y=eyi+Sy2 -,

po= e+ g+

Substituting these equations into (4.13) gives

€ty 4=z +uy1) — (T + 1)+
1+ €Y+ = —eyr — €ys — € pa(z1 +y1) + (T + 1)+
Equating coefficients of € gives
1 =0, U1 =—y.

This is describing the (fast) stable approach to the centre manifold—y; decays to zero while
x1 does not vary. To observe the dynamics on the centre manifold, which happen more slowly,
we need to rescale onto a long timescale by setting 7 = et. Then (with ' =d/dr)

a4+ = +y) - Elw + )+
Y+ EYy+ = —eyr — €y — Epnar + 1) + (w1 +y) + -

Equating coefficients of € now gives
g1 =) - (@ +n)? 0= -y
Thus y; = 0 (we are on the centre manifold) and
i1 = 11 — x% (4.14)
We see immediately the canonical form for a transcritical bifurcation.

Let us look at applying perturbation theory to a more general system. Consider again the
system
x="f(x,p), xeR", pekR, (4.15)

with equilibrium point xg so that f(xq, o) = 0. Suppose a single eigenvalue of Dyf crosses
zero at pu = pp. Expand

2
X=Xy tex;+exo+---,
P (4.16)
po= flo + €p1 + € g A
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Inserting expansions (4.16) into (4.15) gives

Xo+ex) +-=f(xo+ exi 4+, po+epr + )
= f(xo,p0) + € (Dxf(x0, o)x1 + p10,f (%0, po))
+ 622 (2Dxf(x0, po)x2 + 2p120,.£ (%0, f10)
+ 13078 (%0, p10) + 2019, Dxf (x0, p10)x1 + Df (X0, pro)x1x1) + - - -
Equating coefficients of € gives as expected
%o = f(xg, po) = 0.
Equating coefficients of €' gives

X1 = Dyx1f + ,ulauf. (417)

Let the eigenvalues and associated eigenvectors of Dyf be \; and wy, i = 1,...,n. We know
there is one zero eigenvalue, A\; = 0. Let the right eigenvectors (i.e. the eigenvectors of the
adjoint problem) be v;. Thus

Dxf Ww; = AiWi, VZTDxf = )\ivi

Suppose that the \; are all distinct. Then we can normalised the eigenvectors so that

1 i=j
V@‘TWJ':‘S”Z{O i # ]

Now we use {w;} as a basis for x; by writing

n
X1 = ch(t)wj'
Jj=1

Substituting into (4.17) gives
n n
do&twy = Njej()w; + mdf.
j=1 j=1
Multiplying by v;-r (i.e. taking an inner product) picks out the ithe component:
éi<t> = )\Z‘Ci(t) + ulvlrﬁuf.
For i > 2, Re()\;) < 0 and the solution tends to the steady state
C; = —/“Vlrauf,
which defines the centre manifold (locally). For i = 1 we find
él(t) = /«le{a,uf- (4.18)

There is no steady state unless
p1viduf = 0.
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Either v?@uf = 0, which is non-generic, or we must choose p; = 0. Let us consider the generic
case V{@Hf # 0 first. Now the equation for ¢; is ¢;(¢) = 0. As in Example 4.8, the dynamics
on the centre manifold is happening more slowly, and we must rescale onto a long timescale
to see it. Thus we rescale 7 = et. Equating coefficients of O(e!) then tells us that ¢; = 0 for

j = 2,...,n, but leaves c;(7) undetermined, as in Example 4.8. Equating coefficients of €2
gives
/ 1 2
cy (T)Wl = Dyfxy+ ,ugauf + lif X1X1
1
= Dxfx2 +M28uf+ 9 Zzamjaxkfwl,jwl,k
j=1 k=1
where wi = (w11, ..., w1,). Taking an inner product with v; eliminates x2 to give
2D
c = mvlTauf + 51 Z axj@xkv{f w1,jW1
i=1 k=1
i.e.
¢) = apg + pci (4.19)
where

1 n n
o= vfauf, 8= 3 Z Z 8xj8xkv1Tf W1 W -
j=1k=1

Equation (4.19) is the normal form for a saddle-node bifurcation.
What about the non-generic case VlTauf = 0?7 Then we still have ¢; = 0 but this time uq
is arbitrary. After rescaling onto the slow time 7 = et equating coefficients of € gives

T .
¢ = —p1v; Ouf, 1=2,...,n

but leaves ¢; undetermined. Equating coefficients of €? gives

1
c’lwl = Dyfxo+ p20,f + 3 (u%@ﬁf + 210, Dyt x1 + D)Q(f xlxl)
= Dyfx9+ Mgauf + 5 ulﬁuf + 2u1c1 Z 8,uaxjfw1,j + 5 Z Z 8$j82kfw1,jw17k
j=1 j=1 k=1

Taking the inner product with v; eliminates x2 and uo to give
¢ = apf + Bmer + e, (4.20)
where
1 n 1 n
a= iaivle, 8= Z 8M8ij1Tf w1,j, v = 3 Z axjamkvle W1 W1 -
j=1 j=1k=1

If 42 > 4ary then there are two real roots of the right-hand side of (4.20), which may then be
written

¢t =7(e1 — ap)(er — bua).
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We see the bifurcation is transcritical—there are always two roots and they come together
(and switch stability) at g1 = 0. It can be put into the standard form by the translation

Yy =c1 —ap giving
y' =(a—b)umy + vy

Note that if 32 < 4oy there are no real roots of (4.20) and therefore no equilibrium points.
Remark 4.7. For the saddle-node bifurcation we found p; = 0 so that
Xx=xo+ex)+€exg+-,  p=po+ gt
Thus near the bifurcation point (xg, 1)
[ = x0/* ~ (11— po)-
On the other hand, for the transcritical bifurcation we found p; # 0 so that
Ix = xo| ~ (1 — o).

These scalings go hand-in-hand with the type of bifurcation. Determining the correct scaling
is the key step in the perturbation theory approach.

C 7

Example 4.9 (Example 4.8 revisited again). Let us translate Example 4.8 in to the language
of the general problem above. We have

X = [ :; } ’ = [ —yu—(xu(tz:yl ;)(i j(nyﬁ)jy)Q ] .

Then (remember everything is evaluated at (z,y, u) = (0,0,0))

We see v{ 9,f = 0 and
vif=u(z+y) - (z+y)”

Then

1 n
o= 582V¥1f =0, ,3 = Zauaxjv?f w1 = w11+ W12 = 1,
7=1
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1 n o n
o= 5226xj8xkvffw1,jw1,k

j=1 k=1
1
= 3 (—2wy w11 — 2wy 1wy 2 — 2wy 2wy 1 — 2wy w1 2) = —1.
Thus
1
X1 =0 [ 0 and cll = uic] — c%

in agreement with (4.14).
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Example 4.10. Consider the system
T=pur—2x
e (4.21)
y=-y+zx

Clearly (z,y) = (0,0) is an equilibrium point. At this point

Dyf = [ g _01 ] = det(Dxf) = 0 when p = 0.
Near p = 0 we expand

T =ex) + Exg+ -,
y=ep+eEyptooe,
,u:e,u1+62u2+---.

Substituting these equations into (4.21) gives

€i) 4+ = Emay — Ty + - -

€+ g+ =—ey — €yp — Epyr + €] + -
Equating coefficients of €' gives
1 =0, Y1 =—u

so that y; — 0. Rescaling onto the slow time 7 = et gives

x|+ =Epry — Exyr + -
EYy 4= —eyr — Yo — Epyr + Exf + -

Equating coefficients of €' gives 3, = 0 as expected. Equating coefficients of €* gives
) =
0= —yp — 2.

The equation for x1 is not showing the bifurcation: there is still only one equilibrium point.
This tells us we need to look closer to the bifurcation by setting 7 = 0. Since this gives
z} = 0 this tells us that the timescale is even slower, so we set T = €2t to give

dxq

63—dT+'--:63u2x1—62x1y1—e3m2y1—63x1y2+--'

3dy1 _ 2. 3. 3 2.2, 3
edT-i-'”— €Y1 — €Y —€Ys — € uay1 t€x] e + - -

Equating coefficients of €' in the second equation gives y; = 0 as before. Now equating
coefficients of €3 in the first equation and €? in the second equation gives

daxq d

—— = UoX1 — T1Y2,

ar ~ T e = % = ppxy — 5.
0=—y2+ x%

This is the normal form for a pitchfork bifurcation.
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Remark 4.8. Since pu; = 0 we find
|x — xo|* ~ (1 — o)
as in the saddle-node bifurcation.
Remark 4.9. With the extended centre manifold
y = Dh(x) (Ax + f(x, h(x))) < Bh(x) + g(x, h(x))

and we can identity the scaling by solving Bh(x) + g(x, h(x)) = 0 giving y = 2%, which gets
you straight to the bifurcation in this case.

Example 4.11. Consider the system

T=p+2xr—xy

4.22
y=—2y+2z ( )

The equilibrium point is (xg, xg) where

,u—|—2x0—x%:0 = ro=1++p+1

Already at this point we see two solutions for 4 > —1 and no solutions for p < —1 so we
know we have a saddle-node. Anticipating the relative scaling of x and p we expand

$:1+6$1+62x2+"',
y=1+ey +eyos+---,
p=—1+ecpus+---.

Using the long timescale 7 = et and substituting these equations into (4.22) gives

€2x'1 4= Qg + 2exy 4 26% 9 — €11 — €yy — 2x9 — XYy — Y1 + - -
e2y'1 4= =26y — 26%yy + 2exy + 26200 + - - - .

Equating coefficients of €! gives
0=2x1 —x1 —y1, 0=—-2y1 +21
so that y; = x1. Equating coefficients of €? gives
oh = pig + 2my — w3 — Yo — a7,
T = —2ys + 2m9.
Using the second equation to elminate xo — o gives

/
o1

5 = z) = 2uy — 223

! 2
xlzul_m'l_'_

which is in normal form.
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Example 4.12. Consider the bifurcation at the origin for system

=14 p)z — 4y + 2° — 2zy

§ =2z —dpy —y* — 2*

Compute

DE(0,0) = [ 1;“ __4‘; ]

There is a bifurcation at p = 1 with matrix
2 —4
p=[2 5]
and left /right kernels

1

w:[Q], vi=[1 -1], v-w=L

Since, 0,£(0,0) = (0,0), we have o = 0 and compute
v =12, B8 =10,
Writing [z, y]T = 2(¢)[2, 1], the bifurcation is transcritical

5 =12z(u — 1) + 1022

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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4.3 The Hopf bifurcation

There is another generic bifurcation with one parameter. It happens when the eigenvalues at
the bifurcation are imaginary. Recall that we can bring a system to its canonical form

)‘(:AX_‘_f(X?y’/L)a XGRRC
y =By +g(xy,p), yeRWT (4.29)
=0
We have studied the case where A is of dimension 1 and vanishes at the bifurcation. Next,
we study the case where

0 —w
A_[w , } (4.30)
On the center manifold, at the bifurcation, the dynamics of the linear part (with x = (z,y))
is
T = —wy

. (4.31)
Y = wx.

To obtain the behaviour of the system close to the bifurcation (unfolding), we consider the
generic perturbation around the linear system: Close to the bifurcation, the system unfolds
to

fU:MfU_Wy+f(95,yaH)

. (4.32)
y=wz+py+ 9@y, 1.
0---9---0
0---@---0
Example 4.13. Consider the typical example of a Hopf bifurcation
. 2 2
T =pur—wy—zxx +
=y ( 2 yQ) (4.33)
y=wz+py—yl@® +y°).
In polar coordinates, it reads
. 3
r=pur—r
a (4.34)
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In polar coordinates, the general form of a Hopf bifurcation is

= dur + ar® (4.35)
ézw—i-c,u—i-er, .

where a, b, ¢, d are parameters that depend on the vector field at the bifurcation. The parame-
ters ¢ and d can be found from a linear analysis: if A(u) is the eigenvalue such that A(0) = iw,
then
d= d A _d Im(A
= @Re( (W), c= I m(A(p)).

A Hopf bifurcation is a bifurcation from a fixed point to a limit cycle. For g > 0 the radius

of the limit cycle is
[dp
r=1/—
a

and the period is

2 2 2
T = il = il %—ﬂ<1—ﬂ(ac+bd)).
wHepn+br?2  wHceu+bdu/a  w wa
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Theorem 4.10 (Hopf '42). Let
x = f(x, pn), x € R pueR,

and with £ € C*(E x J) for open subsets E C R™ and J C R. Let (xq, 1) € E x J be such
that Dxf(xo, 110) has a single pair of eigenvalues tiw (w € R) and no other eigenvalues with
zero real part. Then there exists a smooth curve of equilibria (x(u), p) with x(up) = xg. The
eigenvalues \(p), M) of Dxf(x(u), 1) vary smoothly with p and are such that A(uo) = iw,

Alpo) = —iw.
If, moreover,

d
G ROy =4 #0,
then there exists a unique two-plus-one dimenensional centre manifold W€ in E X J passing
through (xo, 1) and a smooth change of coordinates such that on the centre manifold the
system is transformed to the normal form
i = (dip+a(x® +yH))r — (w+ i+ bz + )y,
g = (di+a(@®+y%))y + (w+ i+ b(z® + ),
in a neighbourhood of the origin, where i = p — pg.
If a # 0 then W€ is a paraboloid at (xo, pto) and for d > 0

a < 0 = stable limit cycle for u > po,
a > 0 = unstable limit cycle for p < pg.

while for d < 0

a < 0= stable limit cycle for p < pg,
a > 0 = unstable limit cycle for p > pg.

4.3.1 Normal Form Transformations for Hopf Bifurcations

Consider the 2D system
&= flz,y;n),  §=g@y;pm).
Suppose the linearisation at a fixed point (zg,yo) shows that a pair of complex eigenvalues
cross the imaginary axis Re(\) = 0 at a bifurcation point y = pg . In order to put the system
into the normal form for a Hopf bifurcation, i.e.
o= pr4ar®+ 0P,
) = w+br?+ o(rh),

d<0,a>0 d>0,a>0 d<0,a<0
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or, equivalently
= (p+iw)z + (a+ib)|z|z + O(25)

it is in general necessary to do the following (see Glendinning pp. 227-243):

1. Shift coordinates by writing (Z,7) = (x — xo(1),y — yo(u)) and 1 = p — po so that the
fixed point is at the origin £ = ¢ = 0 for all i and the bifurcation is at i = 0.

2. .If necessary, rescale i so that the eigenvalues are A = u 4+ iw. Make a linear change of
basis so that the Jacobian is in the Jordan Normal Form

Re(\) —Im(\)
Im(\) Re())

3. Drop the tildes and write (x,y) as the single complex-valued variable z = x + iy. Set
¢ = 0. Then, Taylor expanding the right-hand sides we see that the ODEs take the
form

3 =iwz 4 a12® + agzz + asz® + 0(23).

It turns out that all these quadratic terms can be removed by making a suitable choice of
the coefficients ; in a near-identity change of coordinates z = w+ oy w? + w4+ a>w>.
[Note: the algebra can be done by differentiating the inverse w = z — a2

a3z? + O(z3) and then substituting for z and Z.]

— Q2% —

4. Now we may attempt to eliminate all the cubic terms in W = iww + bjw? + byw?w +
bsww? + byw? +O(w) by a suitable choice of the coefficients 3; in another near-identity
map

w=2Z+ 2>+ 22?7 + B3272*% + B, 73,

It turns out that the bow?w term cannot be eliminated!

5. Continuing with more near-identity transformations, it is possible to eliminate all the
quartic terms to show that the next term remaining in the normal form is quintic.

The chief point of these steps is to find the sign of a in the normal form, and hence decide
whether the bifurcation is subcritical or supercritical. If steps 1 and 2 have already been done
so that the system is in the form

T o= pr—wy+ flz,y),
) = wr+py+g(x,y)

then

1
a = 16w ((fﬂcmc + fmyy + Gzzy + gyyy)w =+ fﬂcy(fmz + fyy) - gmy(gmx + gyy) — feeGrz + fyygyy) .

Example 4.14 (Example 4.12 revisited).

i = (14 p)z—4y+ 2% — 2y,

= 2x—4py—y2—x2.
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For the equilibrium point at the origin we have

DE(0,0) = [ 1;# _—4‘; ] (4.36)

There is a bifurcation at p = 1/3 with matrix

[4/3 -4 . 16 2v14 _[2+iV14
D_[ . _4/3} = N H8=0  A=di——, v—[ .

1. Compute d. First find A for general p:

1
A=3 (1-3u+V=3T+10p+2502) = d=Re(@\)],_y)= -

2. Change axes. Let

_[2 v pp| 0 —2E
P—[g 0 } = P"DP= 2@ 0
Then set
2
:_L + f(u,v),
Ylop1|?® =
HEaH oy
) 3 u+ g(u,v)
where

[ f } _ p-1 [ x? — 2zy ] _ { 0 \/ﬁ} { (2u — V14v)? — 2(2u — V/14v)(3u) ]
g —y? — 22 314 2 —9u? — (2u — /14v)?

1 V14(—13u? + 4v/1duv — 140?)
T 3/14 [ —3(—8u? + 2v/Tduw + 140?) + 2(—13u? + 4/ 14 uv — 140?) }

_ 1 [ V14(—13u? + 4v/Tduv — 140?) }

3v14 —2u? + 2v/14uv — 7002
3. Use the formula for a:
1
a = m ((fuuu + fuvv + Guuv + gvvv)w + fuv(fuu + fvv) - guv(guu + gvv) - fuuguu + fvvgvv)
3 1
= — (4 X 14(—26V14 — 28V/14) — 2v/14(—4 — 140) — 26v/14 x 4 + 2814 x 140)
32149 x 14
45
- 56
Thus A
45 3 2v14
= d=_2 _ v
a= 56 >0, 5 <0, w 3 > 0,

and the normal form is

= djr + ar’, f=p—1/3.
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w > 0 = anticlockwise rotation

i <0, di>0 p=0,7=ar’ a>0 >0
= r = 0 unstable = r = 0 unstable r = 0 stable

r = y/—pd/a unstable

We have seen there is a Hopf bifurcation at ;4 = 1/3 and a transcritical bifurcation at p = 1.
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e g e
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= &= &=
N = |===
n =z0 w=0.34 w~0.351

heteroclinic connection
Wiz L
i
= | -
W 7 = |7 =
N
w= 9(0).8 = ;.2

We can study bifurcation of periodic orbits by studying bifurcations of the Poincaré map.
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4.4 Local bifurcation of maps

Consider the mapping
Xn+1 = G(Xp), (4.37)

where x € E C R™. Assume that x¢ is a fixed point (i.e. G(xg) = xp).

This fixed point is asymptotically stable if |A\| < 1 for all A € Spec(DG(xp)).
The fixed point is unstable if there 3 A € Spec(DG(xp)) s.t. |A| > 1.

So bifurcation will occur when an eigenvalue is on the unit complex circle.

We consider a mapping with one parameter p
Xn+1 = G(Xnnu)a (438)

where x € E C R™. Assume that xg = xo(p) is a fixed point. We are interested in the
case where one of the eigenvalues crosses the unit disk. This gives three possibilities at the
bifurcation: either (I) A =1, (II) A = —1 or (III) A # X with |A\| = 1.

4.4.1 Case I: A =1 at bifurcation

This case is similar to the cases obtained for vector fields, namely we have locally

2

T T+ p—x saddle-node bifurcation

2

T o+ pr—x transcritical bifurcation

3

T T+ pur—2x pitchfork bifurcation.

Example 4.15 (Bifurcation of periodic orbit). Consider

= —y—a(p—(a®+y’ - 1)%) r=—r(p—(r? =1)%)
g=x—yp—(a®+y* - 1)? =1

We see (0,0) is a fixed point, and there are periodic orbits at
(r* =172 =pu = r=ry=1/1+p/2 p > 0.

I={(r0) eRxS"|0=0}

Define

and consider the Poincaré map from P : " — T,

r— P(r,p).
The bifurcation point is u = 0 with the fixed point (of the map—i.e. a periodic orbit really)
r = 1. Then expanding locally

2
146 P1+8,p) ~ P(1,0)+5PT(1,0)+%Prr(l,O)—l—uPH(l,O)—F“-

62
= 146+ 5 Por(1,0) + pPu(1,0) + -
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since P(1,0) = 0 (r = 1 is the fixed point when p = 0) and P,(1,0) =1 (since P,(1,0) = A =1
at the bifurcation). Thus, locally,

52
6= 6+ 5 Prr(1,0) + uPu(1,0)

and we expect a saddle-node bifurcation if these terms are all non-zero. How do we find P,
and P,? For a system
7= f(r), =1

with fixed point f(1) = 0 we are interested in orbits close to r = 1 for values of u close to
zero. Suppose we start from » =1+ §. Then

2
§ = S0L0) 4 (105 + 2 o (1,0) 4 pfu(1,0) 4
52
= A (L) ufu(1,0) 4 (4.39)

where f-(1,0) = 0 because we are at the bifurcation point. The Poincaré map takes 6(0) to
§(2m). If we donote §(0) = a then we are interested in Pyh,(0,0) and P,(0,0). We could just
solve the nonlinear ode (4.39), evaluate at ¢ = 2w and then differentiate the answer. But it
is much easier to differentiate and then solve. Thus consider § = §(¢,a, ). Differentiating

(4.39) with respect to p and evaluating at = 0, a = 0 gives
\ da
Ou = 00ufrr(1,0) + fu(1,0) = fu(1,0), 6u(0) = 5~ =0.

since 6(¢,0,0) = 0 (the solution to (4.39) with ¢ = 0 and §(0) = 0 is just 6(¢) = 0). Thus
P,(1,0) =96,(27,0,0) = 27 f,(1,0). Similarly

bq = 800 frr(1,0) =0, 64(0) =1

Saa = 55aafrr(17 0) + 5521](.7"7"(1; 0) = 5gfr7”(170)a 5aa<0) =0,
Thus

ba=1,  aa=fm(1,00t = Pu(1,0)=2rf(1,0).
Thus locally the map is
6 = 0 + 7 frr(1,0)6% + 27 f,(1,0) .

In our case frr(1,0) =8, f,(1,0) = —1 and the local form is

5+ 0+ 8m6% — 2w fL(1,0)p,

and we see a saddle-node bifurcation with the emergence of two fixed points for p > 0.
We can check the stability of the bifurcating branches by computing the eigenvalues along
them. For the system
i=f(r), 6=1

with fixed point f(rg) = 0 we consider orbits close to r = 9. Suppose we start from r = r¢+4.
Then .
§=f'(r)d+0(8% = §(t)=Cef 0t
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Note that since we are not at a bifurcation f'(rg) # 0. Thus, after t — t + 27, § — §e2m ' (ro)

Therefore
A = e2nf'(r0),

In our case
f1re) = —(n= (1L = 1)%) + 72208 = 1)2re = 4 (3 - 1) = £4p! (1 £ 0177),

Thus
Ay = e:|:87ru1/2(1:t/,bl/2)

At the bifurcation point = 0, A+ = 1, while for > 0, Ay > 1 and A_ < 1, so that ry is
unstable and r_ is stable.

1.0

0.5

-1.0 -0.5 0.5 1.0 15 2.0 H

4.4.2 Case II: A = —1 at bifurcation. Period doubling

Consider
z = f(o,p) = —x — po + 2° (4.40)
Then

There is a pitchfork bifurcation A = 1 and 4 = —2. At pu = 0 there is a period doubling
bifurcation with A = —1. Fixed points are given by

x:—x—,ua:—i—:l:?’ = r=0, x==%24 p.
Consider applying the map twice:
fe F(f@p),p) = fO(,p).
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Then

P = =+ )=+ pz+a®) + (1 +pz+ %) ~ 1+ )Pz — (1+p) + 1+ @)’ + O(z?)
~ x4 2ux—22%+ -

We see that 1 = 0 is a pitchfork bifurcation for f(2), with two additional fixed points z = +\/1
which exist for ;> 0. These are not fixed points of f, but periodic orbits of period 2.

Iz

Yy Yy Yy
~ =
Sey=—u y=/e y=u ~\\ ~\~
~ © ~ ~
~ ~ ~
~ ~
~ ~ ~
~ ~
SN -~
- x T z
\\ ~ \\
*\ RS ~
~ \~ \\
~ ~ ~
\\ ~ ~
pw=-05 uw=20 w=0.75
The map f

w=20 w=0.75
The map

Topologically the trajectories lie on a Mobius strip. The example below is from the Rossler
System

T = —y-—z,
= x4+ by,
2 = b+z(x—a)

with ¢ = 3.1 and b = 0.2.
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IS

(Y
An important example of period-doubling cascade leading to chaotic dynamics is the
logistic map
x— px(l—x) (4.41)
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5 Global bifurcations, Homoclinic
chaos, Melnikov’s method

5.1 A paradigm

Consider the Duffing oscillator
i=1x—a®— 8t +ycos(t) (5.1)

For 6 = v = 0 there are homoclinic orbits. When § > 0 these homoclinic connections are
broken. When v > 0, § > 0 we get chaos. For what values? What does chaos mean?
Similar questions arise for any conservative system
ov
ox

in which the force may be written as the gradient of a potential with multiple wells.

T =

15

5.2 The problem

Consider the first-order system of differential equations
x = f(x) +eg(x,t) where x € E CR", (5.2)

and assume that g is periodic in ¢ (3 7' > 0 such that g(x,t +T) = g(x,1)).
Assuming we know the dynamics of the system when € = 0 and that it supports periodic
and homoclinic orbits:
e What happens when ¢ > 07
e Are there still periodic orbits?
e Are there homoclinic orbits?
e Are there new orbits?
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Main idea Our construction will be in four steps of increasing complexity

Step 1: Bernoulli shift (the simplest dynamical system with chaos)
Step 2: Smale’s horseshoe (a geometric construction)
Step 3: Homoclinic chaos in ODEs

Step 4: Melnikov’s method (an explicit method to detect chaos)

5.3 Step 1: Bernoulli Shift

To define a dynamical system we need:
- A phase space X.
- The dynamics on ¥ (how elements of ¥ are mapped to other elements).

1. The phase space.

For the Bernoulli shift we define 3 as the set of bi-infinite sequence of 0 and 1:
seX: s={ . S my ey S_1]50yS1y -y Sny-- )y (5.3)

where s; is equal to 0 or 1 for ¢ € Z. To define distance on X, take two elements s, s’ € X
and define

!

d(s,s') = Z ‘Si2;|8" (5.4)

1€EZ

Two elements are close if their central blocks agree.

2. The dynamics on X
Define the shift map o : ¥ — X as follows. If

S=4. . 8 my ey 8-2,8-1/50,81, s Sny---} s
then
o(s)={ .., 8 ny - y5-1,50[81s- -y Sn,-.-}.
Equivalently
(0(8))i = sit1. (5.5)

Question: What are the orbits of ¢ on X7
Theorem 5.1. The shift map has:
1. a countable infinity of periodic orbits, and periodic orbits of arbitrary period;

2. an uncountable infinity of non-periodic orbits;
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3. a dense orbit.

Definition 5.2. A dense orbit for the shift map is a particular orbit s; € ¥ such that for
any s € ¥ and € > 0, In € N such that d(c"(sq),s) < e.

Proof.

1. All periodic sequences are periodic orbits:

{...,1010/1010...}
{...,100100/100100...}

Clearly the period can have arbitrary length.
2. We can map and s € X to
S = 0.808157182872 LRI
This is the binary coding of a real number S € [0, 1] Since the irrational numbers form

an uncountable set, so do the non-periodic orbits in 3.

3. To create a dense orbit we must find s; € ¥ such that for any s € ¥, ¢ > 0 dn € N such
that d(0"(sq),s) < e. We create sq by taking the concatenation of all possible finite
sequences of length n, for alln =1,2,...:

sq={0---0/ 10 00 0110 11000 001 010 011 100 101 110 111---}
~~ ~-

n=1 n=2 n=3

Now for given € > 0 there exists k such that
1
E — < €.
21l
7] >k

For any s € S, the middle sequence s_g...s_1|sp...Sk is in s; somewhere (since all
finite sequences are in s4). If we choose n to shift this sequence to the middle block,

then
|s;i — 0™ (84)i |si — 0" (sa)i] 1
n - E L Sl VAL g —_— < <
d(s,0"(sq)) : 9li] Z 9l = Z 9lil — €
i€ i|>k i[>k

5.3.1 Sensitive dependence to initial conditions

Two important notions in dynamical systems.
Let A be an invariant compact set for an invertible iterative map f : M — M.

Definition 5.3. f has sensitivity to initial conditions on A if de > 0 such that for any p € A
and any neighbourhood U of p, there exists p’ € U and n € N such that | f™(p) — [ (p')| > e.

Definition 5.4. f is topologically transitive on A if for any open sets U,V C A then dn € Z
such that f*(U)NV # 0.
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Together they lead to the notion of chaos:

Definition 5.5. Let A be an invariant compact set for an invertible iterative map f : M —
M. Then f is chaotic on A if it has sensitivity to initial conditions on A and is topologically
transitive on A.

Theorem 5.6. The shift map is chaotic on X.

Proof. Consider a sequence s and all sequences in a neighbourhood U (i.e. all sequences with
the same central block of size k). However large k is, choose a sequence s’ € U which differs
from s in position N > k. Then d(c(s),0™(s')) > 1 so that we have sensitivity to initial
conditions (choose any 0 < € < 1). Moreover, since X has no isolated point then the existence
of a dense orbit can be shown to imply topological transitivity. ([l

5.4 Step 2: Smale’s horseshoe

First define two rectangular regions in the unit square:

Hy = {(z,y) eR*[0<2<1,0<y<1/p},
H = {(z,y) eR*|0<z<1,1-1/pu<y<1}
1
Hy
1=1/p
1/
Hy
0

Second, define a map of these rectangles into themselves:

wl3] < 122005
wfs) = 3 310010



B5.6 Nonlinear Systems Draft date: 25 January 2020 5-5

Stretch

H,

Fold

1
H,
1—-1/p f
” Hy > f(Ho) f(H)
Hy
0
0 A 1T—A
Third, repeat the operation.
~ @\
f f
- —

o/

Fourth, introduce a coding: 101 means that it was right at the first iteration, left at the
second, right at the third (read from the right).
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Vo

1%

Voo

Vo

Vi

Vio

Fifth, do the same for the inverse map:

Hion

Hio
Hyoy
Hy
g
Hyy
LT
My
Hoy
Hyy.
Hy
Hoo
Hyo

Moo

Sixth, take the intersection between the two sets
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This is the intersection of a Cantor set of vertical lines and a Cantor set of horizontal lines.
The dynamics on A is given by f : A — A. By construction A is an invariant set.

Each point in A can be coded by two binary sequences. The first sequence codes its
vertical position, the second sequence codes its vertical position. Therefore to each point p
in A we can associated a bi-infinite sequence o in X.

What about the dynamics? For the vertical encoding we read from the right: ...101 meant
right at the first iteration, left at the second, right at the third, etc. Applying the map to
such a point clearly just chops off the last digit and shifts the sequence to the right: the first
iteration of the new point will be the second iteration of the old point. The same is true for
the horizontal encoding with respect to the inverse map: applying f~! just chops off the last
digit and shifts the sequence to the right. Thus the forward map f must shift the horizontal
sequence to the left and add a new digit at the end. Since f(Hy) = Vp and f(H;) = Vi the
new digit is exactly that which is chopped off the vertical encoding. Thus if we write vertical
encoding backwards to read from left to right

S=q ey SemyeeyS—2,8-1| S0yS1y-vySnyee- o

horizontal encoding vertical encoding

then f maps s to

{0 Smy e 3821, 80[81, -y Sny- -},

that is, the same as the shift map o. If we label the map from A to X
h:A—X

then h is a homeomorphism (1:1, onto, continuous with continuous inverse). Since there exists
a homeomorphism A, it implies that the dynamics of f on A is topologically conjugate to the
dynamics of o on X.

Topological equivalence

A —— A
o
Yy =%
To each orbit in X there is a corresponding orbit on A Therefore, the system has, a count-

able infinity of periodic orbits, an uncountable infinity of non-periodic orbit, a dense orbit,
sensitivity dependence to initial conditions. We conclude that f on A is chaotic.
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5.5 Step 3: Transverse homoclinic points

The stable manifold from x¢ and the
unstable manifold from x; intersect
transversely on the heteroclinic orbit
To.

The stable and unstable manifolds
from the origin intersect tangentially
on the homoclinic orbit I'y.

A transverse homoclinic point is a point at which the stable and unstable manifolds from a
fixed point intersect transversly. It is not possible for a dynamical system to have a transverse
homoclinic orbit since

dimW?(x0) + dimW*(xg) < n

whereas transversality requires
dimW?(xg) + dimW"(xq) > n.

However, the Poincaré map associated with a dynamical system can have a transverse homo-
clinic orbit.

Consider a C'-map P : R" — R™ and suppose that 0 is a hyperbolic fixed point (i.e. no
centre manifold). Suppose that the stable and unstable manifolds intersect transversally at a
point xg.

Since W*(0) and W*(0) are invariant under P, iterates of xo under P and P~! must also lie
in W#(0) N W*(0). Thus

(.., P™(x0), ..., P (x0), %0, P(xX0), .. ., P"(x0),...} € W*(0) N W¥(0).
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None of these points can coincide, since otherwise this would become a periodic orbit, while
we know that P"(xg) — 0 as n — oo [since xg € W#(0)] and as n — —oo [since x¢ € W*(0)].
Thus the existence of one transverse homoclinic point implies the existence of an infinite
number of homoclinic points. It can be shown that they are all transverse, and accumulate
at 0. This leads to what is known as a “homoclinic tangle”.

W) Pl(xg)

In a homoclinic tangle, a high enough iterate of P will lead to a horseshoe map. To see
why this is so consider what happens to a small square near the critical point under iterates
of the map, as illustrated below.

The square is stretched in the unstable direction and compressed in the stable direction. Then
as the unstable manifold approaches the critical point again it is folded. In the following figure
we see that the intersection between the domain D and P® (D) (highlighted red) resembles
that shown for Smale’s horseshoe map.
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The formal argument above can be made rigorous:

Theorem 5.7 (The Smale-Birkhoff Homoclinic Theorem). Let P : R" — R" be a diffeomor-
phism such that P has a hyperbolic fized point of saddle type, p, and a transverse homoclinic
point q € W*(p) N W¥(p). Then there exists an integer N such that F = PN has a hyper-
bolic compact invariant Cantor set A on which F is topologically equivalent to a shift map on
bi-infinite sequences of zeros and ones. The invariant set A

(i) contains a countable set of periodic orbits of F' of arbitrarily long periods;

(ii) contains an uncountable set of bounded nonperiodic orbits, and

(#ii) contains a dense orbit.
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5.6 Step 4: Melnikov’s method

Melnikov’s method gives us an analytical tool to determine the existence of transverse homo-
clinic points for the Poincaré map for a periodic orbit of a perturbed dynamical system. We
consider the case of periodically perturbed Hamiltonian planar systems of the form

x = f(x) + eg(x,1), (5.6)
where ¢ is periodic in ¢ of period T and
(1) For e =0 the system (5.6) has a homoclinic orbit
x = qo(t) —00<t< o0
at a hyperbolic saddle point xg.

(2) For e = 0 the system (5.6) has a one-parameter family of periodic orbits x = qq(t) of
period Ty, in the interior of the homoclinic orbit, with dq,(0)/da # 0.

X0

q0

We will embed the system in 3-dimensional phase space (x,0):
i =f(x)+eg(x,0), O=1. (5.7)

We define the Poincaré map
Plo 3ty 3t
0

where tg € [0,7T) is fixed and
Y = {(x,0): 0 =to},

in the usual way, that is, given £ we integrate (5.7) from tg to o +7 with the initial condition
x = ¢ at t = tyg. Then PP(€) = x(tp + T). Conditions (1) and (2) are enough to guarantee
that the perturbed system (5.6) has a unique hyperbolic periodic orbit x = ~,(t) of period T
and that v.(t) = x¢ + O(e), that is, the orbit lies close to that of the unperturbed system.
The Poincaré map P has a unique hyperbolic fixed point of saddle type x, which is close to
that of the unperturbed system, i.e., x. = xg + O(e).
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The periodic orbit v, of (5.7) and the

. . tO . _
Fixed points of P! in the zy-plane periodic orbit (xo, ) when € — 0.

Choose a point on the (unperturbed) homoclinic orbit. We can shift the origin of time so
that this point is qo(0). We aim to determine the distance between the stable and unstable
manifolds of the map P near qo(0). Denote the orbits which satisfy (5.7) and lie in the stable
and unstable manifolds in the three-dimensional phase space by (q®(¢;to),t) and (q¥(¢;to),t)
respectively.

q(tosto)

When € = 0 we know that (qo(t — to),t) lies in the stable and unstable manifolds of P.
We expand about this solution to give
qi(t;ito) = qo(t —to) +eqi(t —to) + - for ¢ > 1o,
q?(f; to) = qo(t—to)—l—eq%(t—to)—{—'-' for t < ty.
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The limit on the range of ¢ is due to the fact that solutions approach the stable manifold
exponentially for forward time, but diverge from it exponentially for backward time (and vice
versa for the unstable manifold). In principle we can find q; and g} by regular perturbation
theory. Substituting into (5.7) and using the fact that qo satisfies the equation when ¢ = 0
gives

(ﬁ(t; to) = J(qo(t - to))q‘i(t; to) + g(qo(t - to), t) for ¢ > O, (5.8)

where J is the Jacobian matrix of f, with

qi — x1 as t — oo,
where
Xe =X0+ €X1+ -
Similarly
ay'(t;to) = J(qo(t — to))ay (¢ to) + glao(t — to), t) for t <0, (5.9)
with
qi = x1 as t — —oo.

Since for small e W"(x¢) and W*(x.) are almost tangential to the homoclinic orbit at the
point qo(0) we can measure the distance between W*(x.) and W?*(x,) near to the point qg(0)
in the direction normal to the homoclinic orbit. We define the displacement

d(to) = qf (to; to) — qZ(to; to) = € (qi (to; to) — i (to; to)) + - .
If f = (f1, f2) then the outward normal vector is n = (—fa, f1)/|f], so the distance between
the two manifolds at qo(0) is

d.-n - F(@0(0) A (gi(to; to) — ailtosto) (5.10)

[f(a0(0))]

Rather than solve for q} and q} and the substitute into (5.10) we are going to use (5.8) and
(5.9) to get a differential equation for D which we can then solve. To this end define

D(to) =

A%(t;to) = f(ao(t —to)) A ai(tsto)-
Differentiating gives

As(tito) = J(qo(t —to))f(ao(t — to)) A
= J(ao(t —t0))f(qo(t —t0)) A ai(t;
f(ao(t —to)) A (J(ao(t — to))ai(t;to) + g(ao(t — to), 1))
= trace(J(ao(t — t0))) [f(qo(t — t0)) A ai(tito)] + £(ao(t —to)) A glao(t — o))
= f(ao(t — to)) A glao(t —to),t)

qi(t;to) + fao(t —to)) A ai(t;to)
qi(t;to) +
to

since

(Ja) Ab+aA (Jb) = (trace J)(aAb)

for any a and b and in in our case

df1  0fs 0?H O02H
trace J = — =

or | Oy  Oxdy B oyox -
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because the system is Hamiltonian. Therefore

A%(tst0) = 8%(ocito) — [ Eanlt’ — 1) A glan(t’ 1), ) .

so that

o)

8 (tito) = A%(oxito) = [ Eanlt o) A glan(t — t0). 1)

to
But A®(o0;t9) = 0 because
f(qo(t —tp)) — f(x0) =0 as t — oo,

while qj is bounded. Similarly

A“(to;to) = /to f(qg(t — to)) AN g(qo(t — to),t) dt.

— 00

Thus (5.10) becomes

_ eM(tp)
Do) = et
where the Melnikov function
Mito) = [ " an(t — t0)) A glaolt — t0), ) dt. (5.11)

If M has a simple zero at a point {5 = 7 then so does D, so that the stable and unstable
manifolds of the Poincaré map P intersect transversally at the point qo(0). What about the
Poincaré maps for other values of #3? Since the system is autonomous when ¢ = 0 changing
to is equivalent to changing the origin of time in qg, so corresponds to moving the point qg(0)
around the homoclinic orbit.

Theorem 5.8 (Melnikov ’63). Under assumptions (1) and (2), if the Melnikov function M (to)
defined by (5.11) has a simple zero in [0,T] then for all sufficiently small € # 0 the stable and
unstable manifolds W*(x¢) and W"(x.) of the Poincaré map P. intersect transversally, i.e. P
has a transverse homoclinic point. If M (tg) > 0 (or < 0) for all ty then W*(x¢)NW¥(x,) = 0.

We note that there is a generalisation of this theorem to non-Hamiltonian systems with a
slightly different M.

Example 5.1 (Duffing’s equation). Let us return to our motivational example:
i=x— a3 — & +ycos(t).

Suppose 0 and v are small. To quantify this we set 6 — €d, v — ey. We write y = & to put
the equation in the form of a first order system:

3

=y, y=x—1x° — edr + ey cos(t).

This is in the required form % = f(x) + eg(x, t) with

- y _ 0
f_[x—xg}’ g_['ycost—éy]'
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We see g is periodic in ¢t with period T = 2w. When € = 0 the system is Hamiltonian with

H —

2 2 4 T
g_£+£; £ OH O0H .
2 2 4

Since H is conserved during the motion, it follows that the homoclinic orbits have H = 0, so

that
‘ . , 1‘2 1/2
Tr = = €T _ .
Y 2

The solutions are
(z0(t),y0(t)) = qo(t) = £(v/2secht, —v/2secht tanht).

Then, for the right-hand homoclinic orbit (the plus sign),

uw) = [ " E(aolt — t0) A glanlt — to). ) dt

—00

_ /OO yo(t — to) [y cost — dyo(t — to)] dt

—o0
o
= / yo(s) [ycos(s + tg) — dyo(s)] ds
oo
= / V2 sech s tanh s [7 cos(s + tg) + 6v/2sech s tanh s} ds
iy
= - / V2 sech stanh s ['y cos scostg — ysinssintg + 5v/2 sech s tanh s} ds
—o0

= / V2 sech s tanh s [’y sin s sintg — 6v/2sech s tanh s} ds

= \fQ'y sin tg /

—00

[e.e]

sech s tanh ssin sds — 29 /OO sech? s tanh? s ds
= V2ysintomsech(n/2) — 46/3 _
on making the substitution s =t — ¢g. Thus if
V2ymsech(m/2) > 46 /3
then M has simple zeros and there is chaos for small €, while if
V2ymsech(n/2) < 46/3

then M < 0 for all ¢y and there is no homoclinic tangle.



