
B5.4 Waves & Compressible Flow

Question Sheet 4 Solutions

1. The derivation of the equations is in the lecture notes, as is the fact that they can be rewritten
as (

∂

∂t
+ (u± c) ∂

∂x

)
(u± 2c) = 0, (1)

were c =
√
h, and therefore u± 2c is constant on characteristic curves dx/dt = u+ c.

Pressure is p = ρg(h − z) so force on the dam is F =
∫ h
0
p dz = 1

2
ρgh2. If flux is proportional

to force, uh ∝ 1
2
ρgh2, implying u ∝ −gh = −c2, where c =

√
gh (the sign is because u must be

negative). Thus, we can write
u = −kc2, (2)

for some k > 0.

Figure 1: Question 1

Recall that u± 2c are constant along the characteristic curves dx/dt = u± c. For boundary and
initial conditions, we have u = 0, h = h0 (hence c = c0) on {t = 0, x > 0}, and u = −kc2 on
{x = 0, t > 0}.
Characteristics that come from {t = 0, x > 0} have

u+ 2c = 2c0, (3)

u− 2c = −2c0, (4)

along them, so where such characteristics intersect (and both of these equations therefore hold),
we have u = 0, c = c0. On that region, these characteristics are therefore dx/dt = ±c0, i.e
straight lines (region I).

One set of characteristics that come from the dam at {x = 0, t > 0} have negative slope so
pass out of the domain and are unimportant (the ‘negative’ characteristics). The other ‘positive’
characteristics that come from {x = 0, t > 0} have

u+ 2c = −kc2∗ + 2c∗, (5)
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Figure 2: Characteristic diagram for Question 1

where c∗ (potentially dependent on t) is the value of c at the dam x = 0. Where these intersect
with the negative characteristics from {t = 0, x > 0}, we also have

u− 2c = −2c0, (6)

and the combination of these two equations implies that u and c are constant along each of these
positive characteristics. Therefore they are straight lines. The condition at x = 0 also gives

−2c0 + 4c∗ = −kc2∗ + 2c∗ =⇒ c∗ =
−1 + (1 + 2c0k)1/2

k
, (7)

and hence, on all the region where these characteristics reach (region III), we have

c = c∗ =
−1 + (1 + 2c0k)1/2

k
, u = −2

k

(
1 + c0k − (1 + 2c0k)1/2

)
. (8)

Finally, on the remaining region (region II) there must be an expansion fan with positive char-
acteristics emanating from the origin. On each of these u + 2c is constant, and together with
the condition u− 2c = −2c0 from the negative characteristics, this still implies that u and c are
constant along each positive characteristic. Therefore they are straight lines, given by

x

t
= u+ c. (9)

Combining this with the invariant from the negative characteristics, u− 2c = −2c0, we deduce

c =
2c0
3

+
1

3

x

t
, u =

2

3

x

t
− 2

3
c0, (10)

on this region.

The dividing characteristics that separate the different regions are given by those on which c = c∗
and c = c0, so

x

t
= 3c∗ − 2c0 = c0 −

3

k

(
1 + c0k − (1 + 2c0k)1/2

)
, (11)

and
x

t
= c0. (12)
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2. (a) Writing u = cM , the Rankine-Hugoniot conditions are

[ρMc]+− =
[
p+ ρc2M2

]+
− =

[
c2M2

2
+

γp

(γ − 1)ρ

]+
−

= 0. (1)

With c2 = γp/ρ, these give

[
γM2ρ p

]+
− = 0 =⇒

(
p+
p−

)(
ρ+
ρ−

)
=
M2
−

M2
+

, (2)

[
p(1 + γM2)

]+
− = 0 =⇒ p+

p−
=

1 + γM2
−

1 + γM2
+

, (3)[
γp

ρ

(
M2 +

2

γ − 1

)]+
−

= 0 =⇒
(
p+
p−

)(
ρ−
ρ+

)
=

2 + (γ − 1)M2
−

2 + (γ − 1)M2
+

. (4)

To find a relationship between the Mach numbers, eliminate the ratios of pressures and
densities to give

M2
−

M2
+

(
2 + (γ − 1)M2

−

2 + (γ − 1)M2
+

)(
1 + γM2

+

1 + γM2
−

)2

= 1. (5)

This has the obvious solution M2
− = M2

+, so factorising that gives

(M2
− −M2

+)
[
2 + (γ − 1)(M2

− +M2
+)− 2γM2

−M
2
+

]
= 0, (6)

and since M2
− 6= M2

+ for there to be a shock,

M2
+ =

2 + (γ − 1)M2
−

2γM2
− − (γ − 1)

. (7)

[Note that this can also be written as

M2
+ =

γ − 1

2γ
+

1

2γ

(γ + 1)2

(γ + 1) + 2γ(M2
− − 1)

, (8)

so M+ is a decreasing function of M−, with M+ = 1 when M− = 1. Thus one of them must
always be larger than 1 and the other one less than 1.]

Substituting this into the ratio of pressures and rearranging gives

p+
p−

= 1 +
2γ

γ + 1
(M2
− − 1), (9)

and then
ρ+
ρ−

=
M2
−

M2
+

p−
p+

=
(γ + 1)M2

−

2 + (γ − 1)M2
−
, (10)

or
ρ−
ρ+

= 1−
2(M2

− − 1)

(γ + 1)M2
−
. (11)

Now consider

E(M2
−) =

p+
ργ+

/
p−
ργ−

=

(
1 +

2γ

γ + 1
(M2
− − 1)

)(
1−

2(M2
− − 1)

(γ + 1)M2
−

)γ
. (12)
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Clearly E(1) = 1. We want to show E(M2
−) is monotonic increasing since then E(M2

−) > 1
if and only if M2

− > 1 (in which case, also, M2
+ < 1). i.e. the flow must change from

supersonic to subsonic as the gas crosses the shock.

To show the monotonicity of E(M2
−), application of the product rule and algebraic manip-

ulations give

E ′(M2
−) =

2γ

γ + 1

(
1−

2(M2
− − 1)

(γ + 1)M2
−

)γ−1 [(
1−

2(M2
− − 1)

(γ + 1)M2
−

)
− 1

M4
−

(
1 +

2γ

(γ + 1)
(M2
− − 1)

)]
(13)

=
2γ

(γ + 1)2M4
−

(
1−

2(M2
− − 1)

(γ + 1)M2
−

)γ−1 [
(M2
− + 1)(γ + 1)− 2M2

− − 2γ
]

(M2
− − 1)

(14)

=
2γ(γ − 1)

(γ + 1)2M4
−

(
1−

2(M2
− − 1)

(γ + 1)M2
−

)γ−1
(M2
− − 1)2 (15)

> 0, (16)

except at M2
− = 1 (in that case there is no shock, since M− = M+).

Finally, the ideal gas law p = ρRT gives

T+
T−

=
p+
p−

ρ−
ρ+

(17)

= E(M−)2
(
ρ−
ρ+

)1−γ

(18)

= E(M−)2

 1

1− 2(M2
−−1)

(γ+1)M2
−

γ−1

. (19)

(20)

If M2
− > 1, both of these terms are larger than 1, and if M2

− < 1 they are both less than 1.
Hence T+/T− > 1 if and only if M2

− > 1.

(b) We work in a frame in which the shock is stationary, and which therefore moves backwards
from the end of the tube with the shock speed V . In that frame we have u− = U + V ,
p− = p0, ρ− = ρ0, while u+ = V .

The first two shock conditions give

ρ+ =
ρ−u−
u+

, (21)

p+ = p− + ρ−u
2
− − ρ−u+u−, (22)

and substituting into the final condition and rearranging gives

1
2
(u+ − u−)(u+ + u−)u− +

γp−
(γ − 1)ρ−

(u+ − u−) +
γ

γ − 1
u−u+(u− − u+) = 0. (23)

Discounting the spurious solution u− = u+, which would require U = 0, this gives

1
2
(u+ + u−)u− +

c20
γ − 1

− γ

γ − 1
u−u+ = 0. (24)
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and on substituting u− = U + V , u+ = V and rearranging, we obtain

2(U + V )2 − (γ + 1)U(U + V )− 2c20 = 0. (25)

This has solution

U + V =
(γ + 1)U +

√
(γ + 1)2U2 + 16c20

4
, (26)

(positive root since U + V must be positive), and hence

V =

√
(γ + 1)2U2 + 16c20 − (3− γ)U+

4
. (27)

3. (a) See lecture notes.

(b) The first condition shows that q = h−u− = h+u+. Substituting u± = q/h± into the second
condition gives [

q2

h
+
gh2

2

]+
−

= 0, (1)

which indicates that the function f(h) = q2/h+gh2/2, must take the same value at h = h−
and h = h+. Considering the graph of this function (sketch it) there is a minimum at
gh = q2/h2 =⇒ h = q2/3/g1/3, and the function grows to infinity to either side of this
minimum. Thus for any value of h−, there is a unique different value of h+ at which f(h)
takes the same value. What is more, if one of these values is to the right of the minimum,
the other must be to the left, and vice versa.

(c) See lecture notes.

(d) Move to a frame in which the bore is stationary and then the same conditions apply in that
frame. So replace u± with u± − V .

(e) Shock conditions for the moving bore are

[h(u− V )]+− = 0,
[
h(u− V )2 + 1

2
gh2
]+
− = 0, (2)

and we have u+ = 0. Hence
−h+V = h−(u− − V ), (3)

and substituting for (u− − V ) in the momentum condition gives

h+V
2 + 1

2
gh2+ =

h2+V
2

h−
+ 1

2
gh2−, (4)

which rearranges to give (factorizing (h− − h+) 6= 0),

V 2 =
g(h− + h+)h−

2h+
. (5)

V should be positive, since the fluid depth must increase as fluid flows through the bore.
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4. Conserving mass flux into / out of the shock requires

[ρu]+− = 0. (1)

Momentum is ρu, so momentum flux into / out of the shock is ρuu, where u = (u, v). Any
change in momentum flux is due to the force on the shock, which is due to the pressure jump
−[p]+− and is oriented only in the x direction. Thus[

p+ ρu2
]+
− = 0, [ρuv]+− = 0. (2)

Combined with the mass condition that ρu is constant across the shock, the latter indicates that
v− = v+ is conserved.

Finally, the energy is given by e = 1
2
ρ(u2 +v2)+ρcvT . Any change in the energy flux eu through

the shock is due to the rate of work done by the pressure force −[pu]+−. Thus[
ρu

(
1
2
(u2 + v2) + cvT +

p

ρ

)]+
−

= 0, (3)

Using the ideal gas law to write cvT = p/(γ − 1)ρ, and using [ρu]+− = 0 and [v]+− = 0, this gives[
1
2
u2 +

γp

(γ − 1)ρ

]+
−

= 0. (4)

The second law of thermodynamics states that entropy is non-decreasing. This condition requires
that the jump in entropy must be positive as the flow passes through the shock and by looking
at that jump one may show that ρ+ > ρ− (see the question above, where it was shown that
M− > 1 > M+, so u− > c0 > u+, and hence ρ+ > ρ−).

Figure 3: Question 4

Let the initial angle of the shock relative to the normal be α (the angle of incidence), and the
final angle be β, with β = α + δ where δ is the deflection. Then

tanα =
v−
u−
, tan β =

v+
u+
, (5)

and so

tan δ =
tan β − tanα

1 + tanα tan β
=

u− − u+
v− + u+u−

v−

. (6)
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Figure 4: Question 4

Differentiate with respect to v− to find stationary point at v2− = u+u−, at which

tan δ =
u− − u+
2
√
u+u−

=
1

2

(√
u−
u+
−
√
u+
u−

)
(7)

This is clearly a maximum since tan δ → 0 as v− → 0 or v− →∞.

From question 4 we have

u+
u−

=
ρ−
ρ+

=
γ − 1

γ + 1
+

2

(γ + 1)M2
−
>
γ − 1

γ + 1
. (8)

Moreover we deduced that in order for the entropy not to decrease on going through the shock
(as required by the 2nd law of thermodynamics), we must have M2

− ≥ 1. Thus, inspection of the
above expression shows that the largest that u+/u− could be is 1, when M− = 1.

The expression √
u−
u+
−
√
u+
u−

(9)

is maximised when u+/u− is as small as possible, i.e. u+/u− = (γ − 1)/(γ + 1), so we have

tan δ <
1

2

(√
γ + 1

γ − 1
−
√
γ − 1

γ + 1

)
=

1√
γ2 − 1

. (10)

7


