
B5.1: Stochastic Modelling of Biological Processes Hilary Term 2020

Problem Sheet 1

1. Exercise 1.6 on page 32 of the Lecture Notes.

2. Exercise 2.3 on page 56 of the Lecture Notes.

3. The Lotka-Volterra (predator-prey) system was studied in your Part A Differential Equations 1 course
(see pages 38-39 of your lecture notes from last year). We write it as a chemical system

A
k1
−→ 2A, B

k2
−→ ∅, A+B

k3
−→ 2B, (∗)

for two chemical species A (“prey”) and B (“predator”). Its deterministic ODE model is

da

dt
= k1a− k3 a b,

db

dt
= −k2 b+ k3 a b, (♦)

where a(t) and b(t) are concentrations of A and B, respectively. Consider the (dimensionless) param-
eters k1 = k2 = 10 and k3 = 0.1 and initial condition a(0) = 50 and b(0) = 50. For the stochastic case,
consider (dimensionless) volume ν = 1.

(a) Find critical points of ODEs (♦). Investigate their stability, sketch the phase diagram and prove
that the ODE system (♦) has periodic solutions.

(b) Implement the Gillespie (a5)–(d5) for the chemical system (∗). Plot the number of molecules of
A and B as a function of time and compare your results with the solutions of ODEs (♦). Plot
both stochastic and deterministic trajectories (A(t), B(t)) and (a(t), b(t)) in the phase diagram
as well. You should observe that, for a sufficiently long time, the deterministic and stochastic
models give significantly different results. What types of long-time behaviour can the stochastic
model have?

(c) Give an example of a chemical system which has the same deterministic description given by the
ODEs (♦), but its stochastic description (given by the Gillespie SSA) differs from the stochastic
model corresponding to the chemical system (∗).

(d) Consider the chemical system (∗) together with two additional reactions

2A
k4
−→ ∅, ∅

k5
−→ A+B. (∗∗)

Then its deterministic ODE model is
da

dt
= k1a− k3 a b− 2k4 a

2 + k5,
db

dt
= −k2 b+ k3 a b+ k5. (♥)

Use dimensionless parameters k4 = 0.01 and k5 = 1. Show that the deterministic ODE model
(♥) for the combined system (∗)–(∗∗) does not have periodic solutions. What about its stochastic
model? Does it oscillate? If yes, what is its period of oscillations?
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