B4.2 Functional Analysis II: Q2(b) – 2016

Luc Nguyen

University of Oxford

May 2020

Q2(b) - 2016

Given:

- Z: normed space
- $\mathcal{E} \subset Z$ such that

 $\{ \varphi(z) \, : \, z \in \mathcal{E} \, \}$ is bounded for each $\varphi \in Z^*$.

Want: \mathcal{E} is norm-bounded.

Given:

- X: a vector space.
- $\|\cdot\|_1$ and $\|\cdot\|_2$: two <u>in</u>equivalent norms on X.

Want: a linear functional on X which is continuous with respect to $\|\cdot\|_1$ and discontinuous with respect to $\|\cdot\|_2$.

• $Y = Z^*$ is a Banach space.

• View \mathcal{E} as a subset of $Y^* = Z^{**}$: Identify $x \in \mathcal{E}$ with $T_x \in Y^*$ defined by

$$T_x(\ell) = \ell(x)$$
 for $\ell \in Y$.

Note that $||x|| = ||T_x||_{Y^*}$.

- By hypothesis, for each φ ∈ Y, the set {T(φ) : T ∈ E} is bounded. So by PUB, E is bounded as a subset of Y*.
- This means there is some C such that $||T||_{Y^*} \leq C$ for all $T \in \mathcal{E}$. As $||x|| = ||T_x||_{Y^*}$, this gives the boundedness of \mathcal{E} in Z.

- Observation: Let $B = \{x \in X : ||x||_2 \le 1\}$. Then B is unbounded with respect to $|| \cdot ||_1$.
- By (ii), there exists φ ∈ (X, || · ||₁)* such that {φ(x) : x ∈ B} is unbounded.
- The first part means φ is continuous with respect to || · ||₁. The second part means φ is discontinuous with respect to || · ||₂.