B4.2 Functional Analysis II: Q2(a)(ii) – 2017

Luc Nguyen

University of Oxford

May 2020

Given:

- X = C([0,1]) with the standard norm $\|\cdot\|_{\infty}$.
- $A_n: X \to X$ defined by $(A_n x)(t) = x(t^{1+\frac{1}{n}})$.

Want: A_n converges strongly to the identity operator on X, i.e. for every $x \in X$, $||A_n x - x|| \to 0$.

Proof

- A_n converges strongly to the identity operator on X means: for every x ∈ X, ||A_nx − x|| → 0.
- Fix $x \in X$. We need to show

$$\sup_{t\in[0,1]}|x(t^{1+\frac{1}{n}})-x(t)|\to 0 \text{ as } n\to\infty.$$

• By uniform continuity of x, it suffices to show

$$\sup_{t\in[0,1]}|t^{1+\frac{1}{n}}-t|\to 0 \text{ as } n\to\infty.$$

• Fix some small
$$\epsilon > 0$$
.
+ If $t \le \epsilon$, then $|t^{1+\frac{1}{n}} - t| < \epsilon$ for all n .
+ If $t > \epsilon$, then $|t^{1+\frac{1}{n}} - t| \le |t^{\frac{1}{n}} - 1| \le 1 - \epsilon^{\frac{1}{n}} < \epsilon$ for all large n .