B4.2 Functional Analysis II: Q1(a)(ii) – 2017

Luc Nguyen

University of Oxford

May 2020

Given:

- X: A Hilbert space.
- K₁ ⊃ K₂ ⊃ K₃...: nested sequence of non-empty closed convex subsets of X.

Want: Prove that

$$\bigcap_{m=1}^{\infty} K_m \neq \emptyset.$$

Approach 1 – Starting point: Closest point theorem + Parallelogram law

- For each *m*, there exists $x_m \in K_m$ which is closest to the origin.
- As K_1 is bounded, (x_m) is bounded.
- As K_{m+1} ⊂ K_m, we have ||x_m|| ≤ ||x_{m+1}||. So (||x_m||) is a bounded monotone sequence, hence converges to some number, say d.

Approach 1 – Concluding point: Parallelogram law

 Claim: (x_m) is Cauchy. For this, we estimate ||x_m - x_n||, say for m > n. We have

So $\limsup \|x_m - x_n\|^2 \le 0$, i.e. (x_m) is Cauchy!

• Let $x = \lim x_m$. For each n, the sequence (x_m) eventually belongs to K_n , which is closed. So $x \in K_n$ for each n. So $x \in \cap K_m$.

Approach 2 – Weak convergence

- Take x_m ∈ K_m arbitrarily. Then (x_m) ⊂ K₁ and hence is a bounded sequence.
- Weak sequential compactness then implies that a subsequence (x_{m_i}) converges weakly to some x.
- For each *n*, (x_{m_j}) eventually belongs to K_n which is closed and convex. By Mazur's theorem, *x*, being the weak limit of a sequence in this closed convex set, must be in K_n and we are done.
- Remark: If you are following this approach, you will need to prove (1) the weak sequential compactness property and (2) Mazur's theorem; as the problem does not tell you to freely use what you know.