
B4.2 FAII – Sheet 4 of 4 – Solution guide

Q0. (Not to be handed in.) This problem recalls a result in Part A Integration.

Let f ∈ L1
loc(R), a ∈ R and define

F (x) =

∫ x

a

f(t) dt.

(i) Show that F is continuous.

“Solution”. We need to show that if xn → x, then F (xn)→ F (x). Consider for
example the case x > a. Write

F (xn) =

∫
f(t)χ[a,xn](t) dt

and apply Lebesgue’s dominated convergence theorem.

(i) Show that if ϕ is a smooth function, then integration by parts hold:∫ c

b

F (x)ϕ′(x) dx = [Fϕ]cb −
∫ c

b

f(x)ϕ(x) dx.

[Hint: First prove the statement for the case b = a by expressing the left
hand side as a repeated integral and then appealing to Fubini’s theorem.]

“Solution”. When b = a, we compute, using Fubini’s theorem,∫ c

a

F (x)ϕ′(x) dx =

∫ c

a

∫ x

a

f(t)ϕ′(x) dt dx =

∫ c

a

∫ c

t

f(t)ϕ′(x) dx dt

=

∫ c

a

f(t) (ϕ(c)− ϕ(t)) dt

= ϕ(c)

∫ c

a

f(t) dt−
∫ c

a

f(t)ϕ(t)) dt

= F (c)ϕ(c)−
∫ c

a

f(x)ϕ(x) dx.

The conclusion is readily seen as F (a) = 0.

(i) Show that if F is constant, then f = 0 a.e.
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“Solution”. When F is constant, we have 0 = F (b) − F (c) =
∫ c
b
f(t) dt =∫

f(t)χ[b,c](t) dt for all constants b and c. This implies that∫
f(t)ψ(t) dt = 0

for all simple functions ψ with compact support. In particular, for ψ = χ[−n,n]∩{f>0},
we see that the set [−n, n]∩{f > 0} has measure zero for all n > 0 and so {f > 0}
has measure zero. Likewise, {f < 0} has measure zero.

Q1. (a) Use Theorem 4.6.1 to prove the localisation property of Fourier series: if
two (continuous) 2π-periodic functions f and g are equal in an open interval
containing 0, then their Fourier series either both converge at 0 or both
diverge at 0.

“Solution”. Apply Theorem 4.6.1 to the function h = f − g, which vanishes in a
neighborhood around 0 and hence is Holder continuous in that interval.

(b) In the lecture, we prove that there is a continuous function whose Fourier
series diverges at 0. Use (a) to construct a continuous 2π-periodic function
whose Fourier series diverges two given points a 6= b.

“Solution”. Let f be a continuous 2π-periodic function such that SN(f) diverges
at 0. Let g be a continuous 2π-periodic function such that g(x) = f(x− a) in a
neighborhood of a and equals and g(x) = f(x − b) in a neighborhood of b. By
(a), g satisfies the desired property.

Q2. Consider the system {en = 1√
2π
einx}n∈Z as a subset of X = L1(−π, π).

(a) Show that ‖en‖ =
√

2π for all n and ‖en − em‖ = 8√
2π

for all n 6= m.

“Solution”. The first one is straightforward. For the second, we calculate∫ π

−π
|1− eikx| dx =

∫ π

−π

√
2(1− cos kx)1/2 dx

=

∫ π

−π
2
∣∣∣ sin kx

2

∣∣∣ dx = 2k

∫ 2π/k

0

sin
kx

2
= 8,

from which the conclusion follows.

(b*) Show that {en = 1√
2π
einx}n∈Z is a basis of L1(−π, π), i.e. the closed linear

span of {en = 1√
2π
einx}n∈Z is L1(−π, π).
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“Solution”. We know that {en = 1√
2π
einx}n∈Z is an orthonormal basis for L2(−π, π):

Namely, for any f ∈ L2(−π, π), its Fourier series F (f) =
∑

n cne
inx converges

in L2(−π, π).

Let f ∈ L1(−π, π) and fix some ε > 0. We need to show that there is a finite
sum SN =

∑
|n|≤N dn e

inx such that

‖f − SN‖L1(−π,π) ≤ ε.

First select g ∈ C[−π, π] such that ‖f − g‖L1(−π,π) ≤ ε/2. Since g ∈ L2(−π, π),
we can then select SN =

∑
|n|≤N dn e

inx such that

‖g − SN‖L2(−π,π) ≤
ε

2
√

2π
.

By Cauchy-Schwarz inequality, we have

‖g − SN‖L1(−π,π) ≤ ‖1‖L2(−π,π)‖g − SN‖L2(−π,π) ≤ ε/2.

The conclusion follows from triangle inequality.

Q3. Let X be the closed subspace of C[−π, π] consisting of all continuous (on [−π, π])
functions f such that f(−π) = f(π). For n ∈ Z, define en ∈ X by en(t) = 1√

2π
eint

and let

f̂(n) =
1√
2π

π∫
−π

f(t)e−intdt

for f ∈ X. Let {αn}n∈Z be a sequence in C, and assume that for each f ∈ X
there exists a unique element g ∈ X such that ĝ(n) = αnf̂(n) for all n ∈ Z. Let
Tf = g.

(a) Show that T is linear and has closed graph (and so is a bounded operator
on X).

“Solution”. Assume that fk → f and Tfk = gk → g. Then

ĝ(n) = lim
k→∞

ĝk(n) = lim
k→∞

αnf̂k(n) = αnf̂(n) for every n.

So g = Tf .

(b) Show that Ten = αnen for all n ∈ Z and that the sequence {αn}n∈Z is
bounded.
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“Solution”. That Ten = αnen is clear. Now ‖en‖ = 1√
2π

and ‖Ten‖ = αn√
2π

.
Hence

|αn| =
√

2π‖Ten‖ ≤
√

2π‖T‖‖en‖ = ‖T‖,

which gives the second assertion.

(c) Show that there exists a bounded linear functional ϕ on X such that ϕ(en) =
αn for all n ∈ Z.

“Solution”. Let ϕ(f) =
√

2π Tf(0). Then ϕ(en) = Ten(0) =
√

2παnen(0) = αn,
as desired.

[It is tempted to say that, as f =
∑
f̂(n) en, we can let

ϕ(f) =
∑

αnf̂(n)

The problem is that the convergence of
∑
f̂(n) en to f is not uniform, so this is

not allowed.]

Q4. Consider the right shift operator on sequences R(x1, x2, . . .) = (0, x1, x2, . . .).
Show that as an operator on `2, R satisfies σp(R) = ∅, σr(R) = {λ : |λ| < 1}
and σc(R) = {λ : |λ = 1}.
[To put thing in perspective, compare Question 7 of Sheet 4 of B4.1 from MT:
If we consider T as an operator on `∞, then σp(R) = ∅, σr(R) = {λ : |λ| ≤ 1}
and σc(R) = ∅.]

“Solution”. It is easy to see that σp(R) = ∅.
The adjoint of R is the left shift L. The point spectrum of L is readily seen to
be {λ : |λ| < 1}. The spectrum of L is a closed bounded subset of {λ : |λ| ≤
‖L‖ = 1} and so σ(L) = {λ : |λ| ≤ 1}.
We have σr(L) ⊂ σ′p(R) = ∅. Hence σr(L) is empty and so σc(L) = σ(L) \
(σp(L) ∪ σr(L)) = {λ : |λ| = 1}.

Now as Im (λI −R)
⊥

= Ker (λ̄I −L) which is non-trivial if |λ| < 1 and trivial if
|λ| = 1. It follows that Im (λI − R) is non-dense if |λ| < 1 and dense if |λ| = 1,
i.e. σr(R) = {λ : |λ| < 1} and σc(R) = {λ : |λ| = 1}.

Q5. Let X be a complex Hilbert space and A ∈ B(X) be normal (i.e. A∗A = AA∗).
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(a) Show that
rad(σ(A)) = ‖A‖.

Deduce that if P is a polynomial, then

‖P (A)‖ = sup
λ∈σ(A)

|P (λ)|.

“Solution”. As T := A∗A is self-adjoint, ‖T n‖ = ‖T‖n. Hence, by Gelfand’s
formula

rad(σ(T )) = ‖T‖.

An induction gives ‖T n‖ = ‖An‖2. By Gelfand’s formula, this implies

rad(σ(T )) = rad(σ(A))2.

Combining the two identities and the fact that ‖T‖ = ‖A‖2, we get the first
conclusion.

Now, as A is normal, so is P (A). Hence

‖P (A)‖ = rad(σ(P (A)) = sup
λ∈σ(P (A))

|λ|.

But σ(P (A)) = P (σ(A)) by the spectral mapping theorem, so the second con-
clusion follows.

(b) Let P be a Laurent polynomial, i.e. P (z) =
∑

k ak z
k where the summation

range is finite but may contains positive as well as negative powers. Show
that if A is unitary, then

‖P (A)‖ = sup
λ∈σ(A)

|P (λ)|.

“Solution”. Write P (z) = z−N Q(z) where N ≥ 0 and Q is a polynomial. Since
A is unitary, ‖P (A)‖ = ‖Q(A)‖. Hence by (a),

‖P (A)‖ = sup
λ∈σ(A)

|Q(λ)|.

As σ(A) is a subset of the unit circle, we have |Q(λ)| = |P (λ)| on σ(A) and so
the conclusion follows.

Q6. Let X be a complex Hilbert space and S and T be two self-adjoint bounded
linear operators on X.
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(a) Let λ /∈ σ(T ). Use the fact that σ((T − λI)−1) = (σ(T ) − λ)−1 (a form of
spectral mapping theorem) and Gelfand’s formula to show that

‖(T − λI)−1‖ =
1

dist(λ, σ(T ))
.

Deduce that I + (T − λI)−1(S − T ) is invertible if

‖S − T‖ < dist(λ, σ(T )).

Hence, show under this latter assumption that λ /∈ σ(S).

“Solution”. We have that

‖(T − λI)−1‖ = rad(σ((T − λI)−1)) = sup
ζ∈σ((T−λI)−1)

|ζ|

= sup
ζ∈(σ(T )−λ)−1

|ζ| =
(

inf
ζ∈σ(T )−λ

|ζ|
)−1

=
1

dist(λ, σ(T ))
.

Hence, if ‖S−T‖ < dist(λ, σ(T )), then K := (T−λI)−1(S−T ) satisfies ‖K‖ < 1
and so I+K is invertible. This implies that (T−λI)(I+K) = S−λI is invertible
and so λ /∈ σ(S).

(b) Use (a) to show that

‖S − T‖ ≥ distH(σ(S), σ(T ))

where the Hausdorff distance distH(A,B) between two closed subsets A and
B of C is defined by

distH(A,B) = max(sup
a∈A

min
b∈B
|a− b|, sup

b∈B
min
a∈A
|a− b|).

“Solution”. Suppose by contradiction that the conclusion fails. We may assume
without loss of generality that

‖S − T‖ < sup
a∈σ(S)

min
b∈σ(T )

|a− b| = sup
a∈σ(S)

dist(a, σ(T )).

Then, we can select λ ∈ σ(S) such that

‖S − T‖ < dist(λ, σ(T )).

(This implies that dist(λ, σ(T )) > 0 and so λ /∈ σ(T ).) By (a), this implies that
λ /∈ σ(S), which is a contradiction.
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