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Q0. (Not to be handed in.) This problem recalls a result in Part A Integration.
Let f € L}, (R), a € R and define
_ / oL

“Solution”. We need to show that if z,, — z, then F(x,) — F(z). Consider for
example the case x > a. Write
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and apply Lebesgue’s dominated convergence theorem. O

(i) Show that F'is continuous.

(i) Show that if ¢ is a smooth function, then integration by parts hold:
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[Hint: First prove the statement for the case b = a by expressing the left
hand side as a repeated integral and then appealing to Fubini’s theorem.]

“Solution”. When b = a, we compute, using Fubini’s theorem,

/F dx_//f dtdx_//f v) do dt
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The conclusion is readily seen as F'(a) = 0. O

(i) Show that if F is constant, then f =0 a.e.



“Solutz'on When F is constant, we have 0 = F(b) — F(c) = [ f(t)dt =
[ F@) t) dt for all constants b and c. This implies that
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for all simple functions ¢ with compact support. In particular, for v = x[—n nn{s>0}
we see that the set [—n, n]N{f > 0} has measure zero for alln > 0 and so { f > 0}
has measure zero. Likewise, {f < 0} has measure zero. O

Q1. (a) Use Theorem 4.6.1 to prove the localisation property of Fourier series: if
two (continuous) 27-periodic functions f and g are equal in an open interval
containing 0, then their Fourier series either both converge at 0 or both
diverge at 0.

“Solution”. Apply Theorem 4.6.1 to the function h = f — g, which vanishes in a
neighborhood around 0 and hence is Holder continuous in that interval. O]

(b) In the lecture, we prove that there is a continuous function whose Fourier
series diverges at 0. Use (a) to construct a continuous 27-periodic function
whose Fourier series diverges two given points a # b.

“Solution”. Let f be a continuous 27-periodic function such that Sy (f) diverges
at 0. Let g be a continuous 27-periodic function such that g(z) = f(x —a) in a
neighborhood of a and equals and g(z) = f(z — b) in a neighborhood of b. By
(a), g satisfies the desired property. O

Q2. Consider the system {e, = \/127 e} ,cz as a subset of X = LY(—m, ).
(a) Show that ||e,|| = V27 for all n and ||e,, — e, = \/% for all n # m.

“Solution”. The first one is straightforward. For the second, we calculate
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from which the conclusion follows. O]

(b*) Show that {e, :

span of {e, = Z=€""}ez is L!(—m, ).

W €@}, ez is a basis of L'(—m,7), i.e. the closed linear



Q3.

“Solution”. We know that {e, = \/szﬂei””"}nez is an orthonormal basis for L?(—m, 7):

Namely, for any f € L?(—m,n), its Fourier series . (f) = >, ¢,e™ converges
in L?(—7, 7).

Let f € L'(—m,m) and fix some ¢ > 0. We need to show that there is a finite
sum Sy = 3,1« dn e such that

1f = Snllzi(cam <&

First select g € C|—m, 7] such that ||f — g||11(—nx) < €/2. Since g € L*(—m,7),
we can then select Sy = Z\nISN d,, €™ such that

€
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By Cauchy-Schwarz inequality, we have

lg = Snllzr-mm < Ulze(-rmllg = S llL2(rmy < /2.

The conclusion follows from triangle inequality. O]

Let X be the closed subspace of C'[—, 7] consisting of all continuous (on [—m, 7])
functions f such that f(—m) = f(m). Forn € Z, definee,, € X by e,(?) L gint

and let i
~ 1 .
n)=— e "™ dt
Fny === [ 1)

for f € X. Let {ay,}nez be a sequence in C, and assume that for each f € X
there exists a unique element g € X such that §(n) = a,, f(n) for all n € Z. Let

Tf=g.

(a) Show that 7" is linear and has closed graph (and so is a bounded operator
on X).

“Solution”. Assume that f, — f and T'fy = g — g. Then

~

g(n) = lim ge(n) = lim o, fi(n) = o f(n) for every .

Sog=Tf. m

(b) Show that Te, = ape, for all n € Z and that the sequence {a,}nez is
bounded.



Q4.

Q5.

“Solution”. That Te, = ape, is clear. Now |le,| = \/LZ? and ||Te,| = \?—2"?

Hence
|| = V2x||Ten|| < V2| T[|[en]] = [T,
which gives the second assertion. O

(c¢) Show that there exists a bounded linear functional ¢ on X such that ¢(e,) =
a,, for all n € Z.

“Solution”. Let ¢(f) = v/2m Tf(0). Then p(e,) = Te,(0) = V2mane,(0) = ay,

as desired.

[It is tempted to say that, as f = 3 f(n) e,, we can let
p(f) = Zanf<n)

The problem is that the convergence of 3 f(n) e, to f is not uniform, so this is
not allowed.| O

Consider the right shift operator on sequences R(z1,xs,...) = (0,71, %2,...).
Show that as an operator on ¢, R satisfies 0,(R) = 0, o.(R) = {\ : |\ < 1}
and o0.(R) = {\: |A = 1}.

[To put thing in perspective, compare Question 7 of Sheet 4 of B4.1 from MT:

If we consider T" as an operator on £, then 0,(R) = 0, 0,.(R) = {\: |A\| < 1}
and o.(R) = (.]

“Solution”. 1t is easy to see that o,(R) = 0.

The adjoint of R is the left shift L. The point spectrum of L is readily seen to
be {A : |A] < 1}. The spectrum of L is a closed bounded subset of {\ : || <
|L|| =1} and so o(L) = {A: |A| < 1}.

We have 0,(L) C o,(R) = 0. Hence 0,(L) is empty and so o.(L) = o(L) \
(0p(L) Uor(L)) = {A: Al = 1}

Now as Im (A — R)L = Ker (A — L) which is non-trivial if |\| < 1 and trivial if
|A| = 1. Tt follows that Im (A/ — R) is non-dense if |\| < 1 and dense if |\| = 1,
ie. 0.(R)={N: |\ <1} and 0.(R) ={A: |\ =1}. O

Let X be a complex Hilbert space and A € #(X) be normal (i.e. A*A = AA").



Q6.

(a) Show that
rad((A)) = [|Al]

Deduce that if P is a polynomial, then

IP(A)] = sup [P(N)].
A€o (A)

“Solution”. As T = A*A is self-adjoint, ||[T™] = ||T||*. Hence, by Gelfand’s
formula

rad(o(T)) = [T
An induction gives ||T"|| = ||A"||?. By Gelfand’s formula, this implies
rad(o(T)) = rad(c(A))%

Combining the two identities and the fact that ||T']] = ||Al|?, we get the first
conclusion.
Now, as A is normal, so is P(A). Hence

|P(A)|| =rad(c(P(A)) = sup A
A€o (P(A))

But o(P(A)) = P(c(A)) by the spectral mapping theorem, so the second con-
clusion follows. O

(b) Let P be a Laurent polynomial, i.e. P(z) =3, aj 2" where the summation
range is finite but may contains positive as well as negative powers. Show
that if A is unitary, then

IP(A)] = sup [P(M)].
A€o (A)

“Solution”. Write P(z) = 27 Q(z) where N > 0 and @ is a polynomial. Since
A is unitary, |P(A)|| = ||Q(A)||. Hence by (a),

IP(A)]| = sup |Q(A)].
A€o (A)

As 0(A) is a subset of the unit circle, we have |Q(\)| = |P(A)| on ¢(A) and so
the conclusion follows. O

Let X be a complex Hilbert space and S and T be two self-adjoint bounded
linear operators on X.



(a) Let A ¢ o(T). Use the fact that o((T'— AI)™!) = (o(T) — A\)~! (a form of
spectral mapping theorem) and Gelfand’s formula to show that

1
dist(A\, o (T))"

Deduce that I + (T'— X\I)~}(S — T is invertible if
|S —T|| < dist(\, a(T)).

|7 = A1) =

Hence, show under this latter assumption that A ¢ o(S5).

“Solution”. We have that

(T = AN =rad(e((T = A7) = sup (]
cen(T-3

- wp)ng( nf ()

CE(a(T)=N)~ o(T)—A
B 1
~dist(A, (7))

Hence, if [|S—T|| < dist(\, o(T)), then K := (T —XI)~'(S—T) satisfies || K| < 1
and so [+ K is invertible. This implies that (7T'—AI)(/+K) = S— I is invertible
and so A ¢ o(9). O

(b) Use (a) to show that
S = T|| > disty(o(S), o(T))

where the Hausdorff distance disty (A, B) between two closed subsets A and
B of C is defined by

disty (A, B) = max(sup min |a — b|, sup min |a — b|).
acA beB beB a€A

“Solution”. Suppose by contradiction that the conclusion fails. We may assume
without loss of generality that

|S—T]| < sup min |a—0b| = sup dist(a,o(T)).
aca(S) bea(T) aca(9)

Then, we can select A € o(S) such that
|S — T < dist(\, o(T)).

(This implies that dist(\, o(7")) > 0 and so A ¢ o(7').) By (a), this implies that
A ¢ o(S), which is a contradiction. O



