B4.2 FAII – Sheet 4 of 4 – Solution guide

Q0. (Not to be handed in.) This problem recalls a result in Part A Integration. Let $f \in L^1_{loc}(\mathbb{R}), a \in \mathbb{R}$ and define

$$F(x) = \int_{a}^{x} f(t) \, dt$$

(i) Show that F is continuous.

"Solution". We need to show that if $x_n \to x$, then $F(x_n) \to F(x)$. Consider for example the case x > a. Write

$$F(x_n) = \int f(t)\chi_{[a,x_n]}(t) dt$$

and apply Lebesgue's dominated convergence theorem.

(i) Show that if φ is a smooth function, then integration by parts hold:

$$\int_{b}^{c} F(x) \varphi'(x) dx = [F\varphi]_{b}^{c} - \int_{b}^{c} f(x) \varphi(x) dx.$$

[Hint: First prove the statement for the case b = a by expressing the left hand side as a repeated integral and then appealing to Fubini's theorem.]

"Solution". When b = a, we compute, using Fubini's theorem,

$$\int_{a}^{c} F(x) \varphi'(x) dx = \int_{a}^{c} \int_{a}^{x} f(t) \varphi'(x) dt dx = \int_{a}^{c} \int_{t}^{c} f(t) \varphi'(x) dx dt$$
$$= \int_{a}^{c} f(t) (\varphi(c) - \varphi(t)) dt$$
$$= \varphi(c) \int_{a}^{c} f(t) dt - \int_{a}^{c} f(t) \varphi(t) dt$$
$$= F(c)\varphi(c) - \int_{a}^{c} f(x) \varphi(x) dx.$$

The conclusion is readily seen as F(a) = 0.

(i) Show that if F is constant, then f = 0 a.e.

"Solution". When F is constant, we have $0 = F(b) - F(c) = \int_b^c f(t) dt = \int f(t) \chi_{[b,c]}(t) dt$ for all constants b and c. This implies that

$$\int f(t)\,\psi(t)\,dt = 0$$

for all simple functions ψ with compact support. In particular, for $\psi = \chi_{[-n,n] \cap \{f>0\}}$, we see that the set $[-n,n] \cap \{f>0\}$ has measure zero for all n > 0 and so $\{f>0\}$ has measure zero. Likewise, $\{f<0\}$ has measure zero.

Q1. (a) Use Theorem 4.6.1 to prove the localisation property of Fourier series: if two (continuous) 2π -periodic functions f and g are equal in an open interval containing 0, then their Fourier series either both converge at 0 or both diverge at 0.

"Solution". Apply Theorem 4.6.1 to the function h = f - g, which vanishes in a neighborhood around 0 and hence is Holder continuous in that interval.

(b) In the lecture, we prove that there is a continuous function whose Fourier series diverges at 0. Use (a) to construct a continuous 2π -periodic function whose Fourier series diverges two given points $a \neq b$.

"Solution". Let f be a continuous 2π -periodic function such that $S_N(f)$ diverges at 0. Let g be a continuous 2π -periodic function such that g(x) = f(x - a) in a neighborhood of a and equals and g(x) = f(x - b) in a neighborhood of b. By (a), g satisfies the desired property.

- **Q**2. Consider the system $\{e_n = \frac{1}{\sqrt{2\pi}}e^{inx}\}_{n \in \mathbb{Z}}$ as a subset of $X = L^1(-\pi, \pi)$.
 - (a) Show that $||e_n|| = \sqrt{2\pi}$ for all n and $||e_n e_m|| = \frac{8}{\sqrt{2\pi}}$ for all $n \neq m$.

"Solution". The first one is straightforward. For the second, we calculate

$$\int_{-\pi}^{\pi} |1 - e^{ikx}| \, dx = \int_{-\pi}^{\pi} \sqrt{2} (1 - \cos kx)^{1/2} \, dx$$
$$= \int_{-\pi}^{\pi} 2 \left| \sin \frac{kx}{2} \right| \, dx = 2k \int_{0}^{2\pi/k} \sin \frac{kx}{2} = 8,$$

from which the conclusion follows.

(b*) Show that $\{e_n = \frac{1}{\sqrt{2\pi}}e^{inx}\}_{n\in\mathbb{Z}}$ is a basis of $L^1(-\pi,\pi)$, i.e. the closed linear span of $\{e_n = \frac{1}{\sqrt{2\pi}}e^{inx}\}_{n\in\mathbb{Z}}$ is $L^1(-\pi,\pi)$.

"Solution". We know that $\{e_n = \frac{1}{\sqrt{2\pi}}e^{inx}\}_{n\in\mathbb{Z}}$ is an orthonormal basis for $L^2(-\pi,\pi)$: Namely, for any $f \in L^2(-\pi,\pi)$, its Fourier series $\mathscr{F}(f) = \sum_n c_n e^{inx}$ converges in $L^2(-\pi,\pi)$.

Let $f \in L^1(-\pi, \pi)$ and fix some $\varepsilon > 0$. We need to show that there is a finite sum $S_N = \sum_{|n| \le N} d_n e^{inx}$ such that

$$\|f - S_N\|_{L^1(-\pi,\pi)} \le \varepsilon.$$

First select $g \in C[-\pi, \pi]$ such that $||f - g||_{L^1(-\pi,\pi)} \leq \varepsilon/2$. Since $g \in L^2(-\pi, \pi)$, we can then select $S_N = \sum_{|n| \leq N} d_n e^{inx}$ such that

$$\|g - S_N\|_{L^2(-\pi,\pi)} \le \frac{\varepsilon}{2\sqrt{2\pi}}.$$

By Cauchy-Schwarz inequality, we have

$$||g - S_N||_{L^1(-\pi,\pi)} \le ||1||_{L^2(-\pi,\pi)} ||g - S_N||_{L^2(-\pi,\pi)} \le \varepsilon/2.$$

The conclusion follows from triangle inequality.

Q3. Let X be the closed subspace of $C[-\pi, \pi]$ consisting of all continuous (on $[-\pi, \pi]$) functions f such that $f(-\pi) = f(\pi)$. For $n \in \mathbb{Z}$, define $e_n \in X$ by $e_n(t) = \frac{1}{\sqrt{2\pi}}e^{int}$ and let

$$\hat{f}(n) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(t) e^{-int} dt$$

for $f \in X$. Let $\{\alpha_n\}_{n \in \mathbb{Z}}$ be a sequence in \mathbb{C} , and assume that for each $f \in X$ there exists a unique element $g \in X$ such that $\hat{g}(n) = \alpha_n \hat{f}(n)$ for all $n \in \mathbb{Z}$. Let Tf = g.

(a) Show that T is linear and has closed graph (and so is a bounded operator on X).

"Solution". Assume that $f_k \to f$ and $Tf_k = g_k \to g$. Then

$$\hat{g}(n) = \lim_{k \to \infty} \hat{g}_k(n) = \lim_{k \to \infty} \alpha_n \hat{f}_k(n) = \alpha_n \hat{f}(n)$$
 for every n

So g = Tf.

(b) Show that $Te_n = \alpha_n e_n$ for all $n \in \mathbb{Z}$ and that the sequence $\{\alpha_n\}_{n \in \mathbb{Z}}$ is bounded.

"Solution". That $Te_n = \alpha_n e_n$ is clear. Now $||e_n|| = \frac{1}{\sqrt{2\pi}}$ and $||Te_n|| = \frac{\alpha_n}{\sqrt{2\pi}}$. Hence

$$|\alpha_n| = \sqrt{2\pi} ||Te_n|| \le \sqrt{2\pi} ||T|| ||e_n|| = ||T||,$$

which gives the second assertion.

(c) Show that there exists a bounded linear functional φ on X such that $\varphi(e_n) = \alpha_n$ for all $n \in \mathbb{Z}$.

"Solution". Let $\varphi(f) = \sqrt{2\pi} Tf(0)$. Then $\varphi(e_n) = Te_n(0) = \sqrt{2\pi}\alpha_n e_n(0) = \alpha_n$, as desired.

[It is tempted to say that, as $f = \sum \hat{f}(n) e_n$, we can let

$$\varphi(f) = \sum \alpha_n \hat{f}(n)$$

The problem is that the convergence of $\sum \hat{f}(n) e_n$ to f is not uniform, so this is not allowed.]

Q4. Consider the right shift operator on sequences $R(x_1, x_2, ...) = (0, x_1, x_2, ...)$. Show that as an operator on ℓ^2 , R satisfies $\sigma_p(R) = \emptyset$, $\sigma_r(R) = \{\lambda : |\lambda| < 1\}$ and $\sigma_c(R) = \{\lambda : |\lambda = 1\}$.

[To put thing in perspective, compare Question 7 of Sheet 4 of B4.1 from MT: If we consider T as an operator on ℓ^{∞} , then $\sigma_p(R) = \emptyset$, $\sigma_r(R) = \{\lambda : |\lambda| \le 1\}$ and $\sigma_c(R) = \emptyset$.]

"Solution". It is easy to see that $\sigma_p(R) = \emptyset$.

The adjoint of R is the left shift L. The point spectrum of L is readily seen to be $\{\lambda : |\lambda| < 1\}$. The spectrum of L is a closed bounded subset of $\{\lambda : |\lambda| \le \|L\| = 1\}$ and so $\sigma(L) = \{\lambda : |\lambda| \le 1\}$.

We have $\sigma_r(L) \subset \sigma'_p(R) = \emptyset$. Hence $\sigma_r(L)$ is empty and so $\sigma_c(L) = \sigma(L) \setminus (\sigma_p(L) \cup \sigma_r(L)) = \{\lambda : |\lambda| = 1\}.$

Now as $\overline{\operatorname{Im}(\lambda I - R)}^{\perp} = \operatorname{Ker}(\overline{\lambda}I - L)$ which is non-trivial if $|\lambda| < 1$ and trivial if $|\lambda| = 1$. It follows that $\operatorname{Im}(\lambda I - R)$ is non-dense if $|\lambda| < 1$ and dense if $|\lambda| = 1$, i.e. $\sigma_r(R) = \{\lambda : |\lambda| < 1\}$ and $\sigma_c(R) = \{\lambda : |\lambda| = 1\}$.

Q5. Let X be a complex Hilbert space and $A \in \mathscr{B}(X)$ be normal (i.e. $A^*A = AA^*$).

(a) Show that

$$\operatorname{rad}(\sigma(A)) = \|A\|.$$

Deduce that if P is a polynomial, then

$$||P(A)|| = \sup_{\lambda \in \sigma(A)} |P(\lambda)|.$$

"Solution". As $T := A^*A$ is self-adjoint, $||T^n|| = ||T||^n$. Hence, by Gelfand's formula

$$\operatorname{rad}(\sigma(T)) = \|T\|.$$

An induction gives $||T^n|| = ||A^n||^2$. By Gelfand's formula, this implies

$$\operatorname{rad}(\sigma(T)) = \operatorname{rad}(\sigma(A))^2.$$

Combining the two identities and the fact that $||T|| = ||A||^2$, we get the first conclusion.

Now, as A is normal, so is P(A). Hence

$$||P(A)|| = \operatorname{rad}(\sigma(P(A))) = \sup_{\lambda \in \sigma(P(A))} |\lambda|.$$

But $\sigma(P(A)) = P(\sigma(A))$ by the spectral mapping theorem, so the second conclusion follows.

(b) Let P be a Laurent polynomial, i.e. $P(z) = \sum_k a_k z^k$ where the summation range is finite but may contains positive as well as negative powers. Show that if A is unitary, then

$$||P(A)|| = \sup_{\lambda \in \sigma(A)} |P(\lambda)|.$$

"Solution". Write $P(z) = z^{-N} Q(z)$ where $N \ge 0$ and Q is a polynomial. Since A is unitary, ||P(A)|| = ||Q(A)||. Hence by (a),

$$||P(A)|| = \sup_{\lambda \in \sigma(A)} |Q(\lambda)|.$$

As $\sigma(A)$ is a subset of the unit circle, we have $|Q(\lambda)| = |P(\lambda)|$ on $\sigma(A)$ and so the conclusion follows.

Q6. Let X be a complex Hilbert space and S and T be two self-adjoint bounded linear operators on X.

(a) Let $\lambda \notin \sigma(T)$. Use the fact that $\sigma((T - \lambda I)^{-1}) = (\sigma(T) - \lambda)^{-1}$ (a form of spectral mapping theorem) and Gelfand's formula to show that

$$\|(T - \lambda I)^{-1}\| = \frac{1}{\operatorname{dist}(\lambda, \sigma(T))}.$$

Deduce that $I + (T - \lambda I)^{-1}(S - T)$ is invertible if

$$||S - T|| < \operatorname{dist}(\lambda, \sigma(T)).$$

Hence, show under this latter assumption that $\lambda \notin \sigma(S)$.

"Solution". We have that

$$\|(T - \lambda I)^{-1}\| = \operatorname{rad}(\sigma((T - \lambda I)^{-1})) = \sup_{\zeta \in \sigma((T - \lambda I)^{-1})} |\zeta|$$
$$= \sup_{\zeta \in (\sigma(T) - \lambda)^{-1}} |\zeta| = \left(\inf_{\zeta \in \sigma(T) - \lambda} |\zeta|\right)^{-1}$$
$$= \frac{1}{\operatorname{dist}(\lambda, \sigma(T))}.$$

Hence, if $||S-T|| < \operatorname{dist}(\lambda, \sigma(T))$, then $K := (T - \lambda I)^{-1}(S - T)$ satisfies ||K|| < 1and so I + K is invertible. This implies that $(T - \lambda I)(I + K) = S - \lambda I$ is invertible and so $\lambda \notin \sigma(S)$.

(b) Use (a) to show that

$$||S - T|| \ge \operatorname{dist}_H(\sigma(S), \sigma(T))$$

where the Hausdorff distance $\operatorname{dist}_{H}(A, B)$ between two closed subsets A and B of \mathbb{C} is defined by

$$\operatorname{dist}_{H}(A,B) = \max(\sup_{a \in A} \min_{b \in B} |a - b|, \sup_{b \in B} \min_{a \in A} |a - b|)$$

"Solution". Suppose by contradiction that the conclusion fails. We may assume without loss of generality that

$$||S - T|| < \sup_{a \in \sigma(S)} \min_{b \in \sigma(T)} |a - b| = \sup_{a \in \sigma(S)} \operatorname{dist}(a, \sigma(T)).$$

Then, we can select $\lambda \in \sigma(S)$ such that

$$||S - T|| < \operatorname{dist}(\lambda, \sigma(T))$$

(This implies that $\operatorname{dist}(\lambda, \sigma(T)) > 0$ and so $\lambda \notin \sigma(T)$.) By (a), this implies that $\lambda \notin \sigma(S)$, which is a contradiction.