
B3.4 Algebraic Number Theory, Hilary 2020

Exercises 4

In many of these solutions it is worth having to hand the following data. The
Minkowski bound is 1

2

√

|∆K | (real quadratic case) and 2
π

√

|∆K | (imaginary
quadratic case). The descriminant ∆K , K = Q(d), is 4d if d ≡ 2, 3(mod 4) and
d if d ≡ 1(mod 4).

Question 1. Find all quadratic fields for which the Minkowski bound is strictly
less than 2. What is the class number of these fields?

Solution 1. The full list is Q(
√
d) where d = 2, 3, 5, 13 (real fields) and d =

−1,−2,−3,−7 (imaginary fields). It follows immediately from Minkowski’s the-
orem that all these fields have class number 1.

Question 2. Show that Cl(K) is cyclic of order two, where K = Q(
√
−37).

Solution 2. Since d ≡ 3(mod 4), OK = Z[
√
−37] and ∆K = −148. Therefore

MK = 2
π

√
148 which, whilst it is less than 11, is sadly a little bigger than 7.

Thus generators of Cl(K) may be found amongst the (ideal) prime factors of
(2), (3), (5) and (7). Dealing with this seems, in the light of the last example,
as if it could be a formidable challenge. However, this turns out not to be the
case.

The minimal polynomial m(X) for
√
−37 is X2 + 37.

Over F2 this factors as (X + 1)2, so by Dedekind (2) = p2 where p =
(2, 1 +

√
−37) is not principal, and has norm 2.

Over F3 this is irreducible, since −37 ≡ −1 is not a quadratic residue modulo
3. Thus by Dedekind (3) is itself prime (that is, 3 is inert)

Over F5 it is also irreducible, since −37 ≡ 3 is not a quadratic residue modulo
5. Thus by Dedekind, 5 is inert.

Over F7 it is also irreducible, since −37 ≡ 5 is not a quadratic residue modulo
7. Again, by Dedekind 7 is inert.

From the above analysis, it follows straight away that Cl(K) is cyclic of
order two and generated by [p].

Question 3. Find Cl(K), where K = Q(
√
−6).

Solution 3. This is a quadratic field Q(
√
d) with d = 6. Since d ≡ 2(mod 4),

OK = Z[
√
−6] and ∆K = −24. Therefore MK = 2

π

√
24 which is definitely less

than 5 (but, it turns out, not less than 3). Thus generators of Cl(K) may be
found amongst the (ideal) prime factors of (2) and (3).

The minimal polynomial m(X) for
√
−6 is X2 + 6.

Over F2 this factors as X2, so by Dedekind we have (2) = p2 where p =
(2,

√
−6) has norm 2.

Over F3 this also factors as X2, so by Dedekind we have (3) = q2 where
q = (3,

√
−6) has norm 3.
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Neither p nor q is principal, since NK/Q(a+ b
√
−6) = a2 + 6b2 and so there

are no elements in OK of norm 2 or 3. Therefore, by very simple group theory,
Cl(K) is either C2 (cyclic of order 2) or C2 × C2, and we can decide between
these by deciding whether or not [p] = [q]. To do this, note that pq contains
2
√
−6 and 3

√
−6, and hence

√
−6, and so (

√
−6) ⊆ pq. The norm of either side

is 6, so in fact (
√
−6) = pq and so [p] ∼ [q]−1 ∼ [q] (this last statement follows

since q2 is principal). Therefore Cl(K) is cyclic of order 2 and hK = 2.

Question 4. Let K be a number field, other than Q. Show that ∆K > 1.

Solution 4. Recall Minkowski’s theorem, that every ideal class in OK contains
an ideal a with N(a) 6 MK := ( 4π )

r2 n!
nn

√

|∆K |. Thus, we must certainly have
MK > 1 and so

∆K > (
π

4
)2r2(

nn

n!
)2 > (

π

4
)n(

nn

n!
)2.

We claim this is always > 1. For this, we will need some simple bounds on
factorials. Noting that x(n − x) 6 (n/2)2, we see upon taking products over
x = 1, . . . , n − 1 that (n − 1)! 6 (n/2)n−1, and so n! 6 2(n/2)n. Substituting
into the bounds above gives

∆K > (
π

4
)n4n

1

4
=

1

4
πn,

which is obviously > 1 for all n > 2. (Students could create a bit more work for
themselves here by using less appropriate bounds for factorials.)

Question 5. Find Cl(K), where K = Q(
√
−34).

Solution 5. The Minkowski bound is 4
π

√
34 < 8. Thus we only need consider

primes 6 7. The minimal polynomial is X2 + 34, and the ring of integers is
Z[
√
−34]. Applying Dedekind gives
Mod 2: (2) = (2,

√
−34)2 = p22, where p2 has norm 2 and is not principal

(since 2 6= a2 + 34b2 is not the norm of any element).
Mod 3: X2 + 34 = X2 − 2 is irreducible, so (3) is inert.
Mod 5: X2+34 = X2− 1 = (X − 1)(X +1), so (5) = (5,−1+

√
−34)(5, 1+√

−34) = p5p
′
5 say. Neither of these ideals is principal.

Mod 7: X2 +34 = (X − 1)(X +1) so (7) = (7,−1+
√
−34)(7, 1+

√
−34) =

p7p
′
7.
Now let’s look in more detail at the prime 5. Note that the only elements of

norm 25 are ±5, and the ideal (5) is not p25, since it is p5p
′
5 as we have seen. An

easy check shows that there is no element of norm 125. So p35 is not principal
either. Note, however, that NK/Q(9+4

√
−34) = NK/Q(9−4

√
−34) = 625 = 54.

We claim that 9 ± 4
√
−34 are coprime. In the ideal generated by both of

these elements, we have 18 and 8
√
−34 and hence 8 × 34 = 272, and hence

272− (15× 18) = 2. Then we have 9 = (9+ 4
√
−34)− (2× 2

√
−34) and hence,

finally 1.
Since (5) = p5p

′
5, one of (9 ± 4

√
−34) must be p45, and the other p′45 . Thus

[p5] has order 4 in the ideal class group.
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Finally, we show that the classes of [p2], [p7], are in the group generated by
[p5].

For [p2], observe that

NK/Q(4 +
√
−34) = 50 = 2 · 52,

so (4+
√
−34) factors as a product of an ideal of norm 2 (either p2 or p′2) times

two ideals of norm 5. Either way, [p2] is in the group generated by [p5].
For [p7], observe that

NK/Q(1 +
√
−34) = 35 = 5× 7

and argue very similarly.
Conclusion: the class group is generated by [p5] and so is cyclic of order 4.

Question 6. Find Cl(K), where K = Q(
√
65).

Solution 6. d ≡ 1(mod 4), and this is a real quadratic field, so the Minkowski
bound MK is 1

2

√
65 which is a tiny amount bigger than 4, but certainly less than

5. Thus we can find generators for Cl(K) from amongst the prime factors of (2)

and (3). OK has a power integral basis Z[ 1+
√
65

2 ], and the minimal polynomial
of the generator is X2 −X − 16.

Modulo 2, this factors as X(X + 1), so we have (2) = p2p
′
2 where p2 =

(2, 1+
√
65

2 ), p′2 = (2, −1+
√
65

2 ), and both these ideals have norm 2. We claim
neither is principal. Indeed, if they were, then for some a, b ∈ Z we would have

to have N(a+ b( 1+
√
65

2 )) = (a+ b
2 )

2 − 65( b2 )
2 = ±2, whence x2 − 65y2 = ±8 for

some x, y ∈ Z. This is impossible, working modulo 5.
Modulo 3, the minimial polynomial is X2−X−1, which is irreducible. Thus

(3) is inert.
The conclusion then is that Cl(Q(

√
65)) ∼= Z/2Z, with a generator being [p2]

(or [p′2]).
Remark. Because the course does not include a discussion of units in real

quadratic fields, we do not really have the tools for class group calculations in
them unless favourable accidents occur, as here. Students should be told more
about units if time allows.

Question 7. Find all integer solutions to the equation y2+74 = x3. (You may
assume that hQ(

√
−74)) = 10.)

Solution 7. Factor the equation as (y +
√
−74)(y −

√
−74) = (x)3. We first

claim that the two factors are coprime. Any common ideal prime factor p must
divide 2

√
−74.

Suppose first that p|2. By Dedekind, the prime factorisation of (2) is (2,
√
−74)2.

Therefore p|(
√
−74), and so p|(y); but this means, taking norms, that 2|y. Then

x3 ≡ 2(mod 4), which is a contradiction.
Suppose then that p|(

√
−74) but p ∤ 2. Thus we must have p|(37) and

Np = 37. As before, p|(y). Taking norms, we see that 37|y. But then we
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quickly get a contradiction by looking at the original equation, since 37 will have
to divide both x and y and thus 372 divides y2, x3 and hence 37, a contradiction.

Thus we have an ideal equation ab = (x)3, where a, b are coprime. This
implies (by unique factorisation into prime ideals) that a, b are themselves cubes
of other ideals, a = a′3, b = b′3. Moreover we know that [a′]3[b′]3 is trivial in
the ideal class group. Since this class group has size 10, [a′], [b′] must also be
trivial in this group, thus we have

(y +
√
−74) = (a+

√
−74b)3

for some integers a, b. Comparing coefficients gives

y = a3 − 222ab2,

1 = 3a2b− 74b3.

Factoring the second of these leads to b = ±1. With b = 1 we have 3a2 = 75,
which implies a = ±5. With b = −1 we get no solution. Thus we get the value

y = ±(53 − 222× 5) = ±985,

which then gives the value x = 99. (One can get x without a calculator by
noting it must be a2 + 74b2.)

Question 8. Show that the ring of integers in Q(21/3) is a principal ideal
domain (any results about this field established on previous sheets may be used
without proof).

Solution 8. We use the fact that OK = Z[α], where α = 21/3, and that
∆K = −108; both of these facts were established on Sheet 1. K has one real
embedding and one pair of complex conjugate embeddings, so the Minkowski
bound is 4

π
6
27

√
108 ≈ 2.94 . . . . Thus we only need check that (2) splits as a

product of principal prime ideals. But this is clear, since (2) = (21/3)3, and
(21/3) is an ideal of norm two so must be prime.

Question 9. (i) Let Λ be a lattice in R2 which has no nonzero vector x with
‖x‖ 6 1. Show that det(Λ) > 1

2

√
3.

(ii) Deduce a (small) improvement to the Minkowski bound for imaginary
quadratic fields.

(iii) Briefly comment on the implications for the Rabinowicz phenomenon.

Solution 9. (i) Let v be a nonzero vector of shortest length. Then v = ae1 +
be2 (where e1, e2 is some integral basis) and we must have a, b coprime, since
otherwise 1

gcd(a,b)v would lie in Λ, and this vector is obviously shorter. Set

w = ce1 + de2 with ad − bc = 1; then v, w are an integral basis for Λ, because
we have transformed by a matrix in SL2(Z).

By shrinking (if necessary) and rotating Λ, we may assume that v is in
fact the standard basis vector e1. Now note that every vector in Λ other than
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multiples of e1 has y coordinate |y| >
1
2

√
3: if (x, y) ∈ Λ then we can find

(x′, y) ∈ Λ with |x′| 6 1
2 by subtracting appropriate multiples of e1. Suppose

that w = (x, y). Then det(Λ) = |
∣

∣

∣

∣

1 0
x y

∣

∣

∣

∣

| = |y| > 1
2

√
3, as required.

(ii) Recall the discussion of the Minkowski bound for imaginary quadratic
field in lectures. The key lemma there was an application of Blichfeldt’s lemma
with the ball of radius

√
R, leading to the conclusion that if πR > 4 det(Λ) then

the ball of radius
√
R contains a nonzero point of Λ. But now we can do better:

consider Λ′ := 1√
R
Λ, which has det(Λ′) = 1

R det(Λ). By (i), Λ′ either has a

nonzero vector of length 6 1 or else det(Λ′) > 1
2

√
3. So if det(Λ) < 1

2

√
3R, the

ball of radius
√
R contains a nonzero point of Λ. Applying this in the proof of

the Minkowski bound, we see that M ′
K =

√

|∆K |/3 is a bound which works for

imaginary quadratic fields. (Note that 2/π ≈ 0.637, 1/
√
3 ≈ 0.577.)

(iii) Working through Section 11.4 of the notes almost verbatim, one gets
that if x2+x+a is prime for all x 6

√

a/3, then x2+x+a is prime for x up to
a− 2. (The main point of my mentioning this is that it was Question 6 at the
IMO in 1987; I had always assumed that one could do this via the Minkowski
bound, but it turns out that the Minkowski bound is not quite sharp enough,
even for imaginary quadratic fields. Of course there is an “elementary” solution
to the IMO question.)
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