B3.4 Algebraic Number Theory, Hilary 2020

Exercises 2

Q 1. Suppose that α is an algebraic integer of degree n, with monic minimal polynomial $m_{\alpha} \in \mathbb{Z}[X]$. Let $K = \mathbb{Q}(\alpha)$. Show that

$$\operatorname{disc}_{K/\mathbb{Q}}(1,\alpha,\ldots,\alpha^{n-1}) = (-1)^{n(n-1)/2} \mathbf{N}_{K/\mathbb{Q}}(m'_{\alpha}(\alpha)).$$

Using this, compute disc_{K/Q}(1, α , α^2), where $K = \mathbb{Q}(\alpha)$ with $\alpha = 2^{1/3}$.

The next five questions are related and discuss the cyclotomic field $K = \mathbb{Q}(\zeta_p)$, where $\zeta_p := e^{2\pi i/p}$ and p is an odd prime.

Q 2. Show that the degree $[K : \mathbb{Q}]$ is p - 1.

Q 3. Evaluate $\mathbf{N}_{K/\mathbb{O}}(1-\zeta)$.

Q 4. Show that $\frac{1}{p}(\zeta - 1)^{p-1}$ is an algebraic integer.

Q 5. Evaluate disc_{K/Q} $(1, \zeta, ..., \zeta^{p-2})$. (*Hint: you may want to use Question 1 and the answer to Question 3.*)

Q 6. (i) Suppose that $c_0, c_1, \ldots, c_{p-2}$ are integers and that

$$\frac{1}{p}(c_0 + c_1(\zeta - 1) + \dots + c_{p-2}(\zeta - 1)^{p-2}) \in \mathcal{O}_K.$$

Show that all the c_i are divisible by p. (*Hint: suppose not, and let r be minimal such that* $p \nmid c_r$. You may wish to recall Questions 3 and 4.)

(ii) Show that $1, \zeta, \ldots, \zeta^{p-2}$ is an integral basis for \mathcal{O}_K .

Q 7. Let K be a number field. We say that K is norm-Euclidean if \mathcal{O}_K is a Euclidean domain with respect to the norm function: that is, given $a, b \in \mathcal{O}_K \setminus \{0\}$ we may find $q, r \in \mathcal{O}_K$ such that a = qb+r with $|\mathbf{N}_{K/\mathbb{O}}(r)| < |\mathbf{N}_{K/\mathbb{O}}(b)|$.

- (i) Show that a norm Euclidean domain is a principal ideal domain.
- (ii) Let $K = \mathbb{Q}(\sqrt{-7})$. Show that K is norm-Euclidean.

Q 8. Let $K = \mathbb{Q}(\sqrt{-7})$. In this question you may assume (as follows from Question 7) that \mathcal{O}_K is a PID.

- (i) Factor 2 and $\sqrt{-7}$ into irreducibles in \mathcal{O}_K .
- (ii) Suppose that $7 \nmid x$. Show that $2x + \sqrt{-7}$ and $2x \sqrt{-7}$ are coprime.
- (iii) Show that there are no integer solutions to the equation $4x^2 + 7 = y^3$.

Q 9. Let $K = \mathbb{Q}(\sqrt{-p})$, where p is a prime congruent to $1 \pmod{4}$. Show that \mathcal{O}_K is not a principal ideal domain.

ben.green@maths.ox.ac.uk