B3.4 Algebraic Number Theory: Condensed version.

This document contains the basic definitions and results from the course, in
condensed form with no examples or proofs. It should be more-or-less sufficient for
attempting the example sheets. Of course, you can refer to the full notes if you

need to.

Chapter 1: Algebraic numbers

Algebraic numbers. Minimal polynomials.

e A complex number « is algebraic if it is the solution to some polyno-
mial equation with coefficients in Q. The set of all algebraic numbers is
denoted by Q.

e Suppose that o« € Q. Then there is a unique nonzero monic irreducible
polynomial m, (X) satisfied by «, which we call the minimal polynomial
of a. If f € Q[X] is any other polynomial satisfied by « then m|f.

e Let a € C. Then « is algebraic if, and only if, [Q(«) : Q] < co. Suppose
that « is algebraic. Then Q(a) = Q[a]. Suppose that m,,, the minimal
polynomial for «, has degree n. Then a basis for Q(«) as a vector space
over Q is 1,a,...,a™ 1, that is to say Q(a) may be identified with the
polynomials in « of degree < n, and hence [Q(«) : Q] = degm, = n.

e Suppose that « satisfies an equation of degree n over Q. Then [Q(«) :
Q] < n.

e Suppose that «, 8 are algebraic. Then [Q(«, 8) : Q] < [Q(«) : Q][Q(B) :
Q). The algebraic numbers Q are a field.

Number fields.

o A number field K is a subfield of C which is a finite degree extension of
Q.

e Let a € C. Then «a is algebraic if and only if it lies in some number field
K.

e (Primitive element theorem) Every number field K is of the form Q(6)
for some algebraic number 6.

e Quadratic fields: every field of degree 2 over Q is of the form Q(\/ﬁ)
for d a squarefree integer (not necessarily positive). These fields are all

distinct.
Conjugates and embeddings.

e Suppose that « is an algebraic number with minimal polynomial m, of
degree n. Then the roots of m, are called the conjugates of a. The

conjugates are distinct.



e An embedding o : K — C is a(n injective) field homomorphism.

e Let K = Q(A) be a number field of degree n. Then any embedding
o : K — C maps 0 to one of its conjugates 6;. Conversely, for each i there
is a unique embedding o; : K — C with () = 6;. In particular, K has
exactly n distinct embeddings. We will always denotes them o1,...,0, :
K — C , with o; being the identity.

Norm.

o If a € K, we define the norm N g(a) := [ 0i(e).

e Basic facts: Ng/g(af) = Ng/g(a)Ng/o(8), Nk /g(y) = 0 if and only if
7 =0; Ng/g(g) = ¢" for g € Q

e The norm takes values in Q.

e Ng/g(a) is the determinant of the multiplication-by-a map as a linear
map.

Trace.

o If a € K, we define the trace N g(a) := Y7 oi(a).

e The trace takes values in Q.
Discriminants.

e Let eq,...,e, be a basis for K over Q. Then we define the discrimi-
nant discgg(er, ..., en) to be (det M)?, where M = M(ey, ... ey,) is
the matrix with M;; = o;(e;).

e disck/g(er,...,en) #0.

e We have discg/g(e1,- .., e,) = det((trx/g(eie;)i;)-

e Consequently, discx/g(e1,...,en) € Q.

/

e Suppose that e, ..., e, and e}, ..., e), € K arerelated by e} = >, Ay ex,

T n

where the matrix A has rational entries. Then
discxg(el, - .., e),) = (det A)* discr/g(er, .- ., €n).

Chapter 2: Algebraic integers

Algebraic integers.

e Suppose that a € Q is an algebraic number. Then « is an algebraic
integer if it satisfies a monic polynomial in Z[X]. The set of algebraic
integers is denoted by O.

e Let o be an algebraic number. Then « is an algebraic integer if and only
if its minimal polynomial m, has integer coefficients. In particular, a
rational number is an algebraic integer if and only if it is an integer, that
is to say ONQ = Z.

e The algebraic integers O form a ring.



e Suppose that o € Q. Then some integer multiple of « is an algebraic
integer.

e Let K be a number field. Og := O NK.

e Let 01,...,0, — C be the embeddings of K. Suppose that o € Ok.
Then o;(«) is an algebraic integer.

o If o € Ok then Ng ,g(a) € Z and trg g(a) € Z.

e Suppose that e, ...,e, € Ok. Then disck/g(e1,...,en) € Z.

Units.

e Let K be a number field, and Ok its ring of integers. Note that Ok
(being contained in a field) is an integral domain. A wunit is an element
u for which there is v € O with uv = 1. Equivalently, the inverse u !
(in the field K) in fact lies in Og. It is easy to see that the units form
a group under multiplication. We will sometimes write U(Of) for the
group of units in O.

e u € O is a unit if and only if Ny ,q(u) = £1.

Integral bases. Theorem: Suppose K has degree n. Then Ok is a free abelian
group of rank n, by which we mean that there are ej,... e, such that O =
EBZL:l Ze; (that is, the e; lie in Ok and every element of O is an integer combina-
tion of the e; in precisely one way). In this situation, eq, ..., e, is called an integral

basis for Ok.

Discriminant of a number field. discg,g(e1,...,e,) does not depend on the
choice of integral basis eq,...,e,, and therefore it is an invariant of the number
field. It is called the discriminant of K and denoted Ag.

Quadratic fields. Let K = Q(\/ﬁ), d # 1 squarefree. The we have the following
proposition. An integral basis for K is given by
e 1 and Vd if d = 2,3(mod 4);
e 1 and (1 +Vd) if d = 1(mod 4).
The discriminant A is given as follows:
e 4d if d = 2,3(mod 4);
e dif d=1(mod4).

Computing an integral basis. The following lemma is useful. Suppose that K is a
number field and that eq,...,e, are elements of Ok, independent over QQ, which do
not form an integral basis. Then there exists a prime p with p?| disci/g(e1, .-, en)
and integers mq,...,my, € {0,...,p — 1}, not all zero, such that 2%(mlel + 4
mpen) € Ok. In particular, if ey, ..., e, € Ok and discg (e, - .,en) is nonzero

and squarefree, ey, ..., e, are an integral basis for Og.



Ideals.

Chapter 3: Irreducibles and factorisation

An element x € Ok is irreducible if it is not a unit and if, whenever
x = yz with y, 2z € Ok, then one of y, z is a unit.

Every x € Og may be factored into irreducibles in at least one way.
Ok is a unique factorisation domain (UFD) if factorisation into irre-
ducibles is unique, up to units and ordering of the factors.

Ok is a UFD for various small examples such as K = Q(i), Q(v/—2), but
need not be in general. For instance, Og/=) is not a UFD.

Chapter 4: Ideals and their basic properties

An ideal a in Ok is a subset which is a subgroup under addition, and
which is closed under multiplication by elements of O. We will some-
times write Ideals(Ok) for the set of ideals in Ok. Given o € Ok, we
may form the principal ideal (o) := {ax : x € Ok}.

The map ¢ : O — Ideals(Og) which associates o € Ok to the principal
ideal () is “an embedding up to units”. (More precisely, ¢ induces an
injective map Ok /U(Ok) — Ideals(Ok).)

If the map ¢ : O — Ideals(Ok) is surjective, that is to say if every ideal
is a principal ideal, then Of is said to be a principal ideal domain (PID).
(Groups, Rings and Modules) A PID is a UFD, but the converse is not
true in general.

(Chapter 6) The converse is true in number fields: if Ok is a UFD, then
it is a PID.

Basic properties.

Let a be a non-zero ideal in Og. Then a contains a non-zero rational
integer a, and thus the principal ideal (a) is contained in a.

Let a be a nonzero ideal. Then the quotient ring Ok /a is finite. In
particular, a is a finite-index Z-submodule of Ok

Every nonzero ideal a is a free Z-module of rank n = [K : Q).

Norms of ideals.

Let a be a nonzero ideal in Og. Then we define the norm N(a) to be
Ok /al.

Suppose that a = («) is a principal ideal, for some o € O \ {0}. Then
N(a) = [Ng/o(a)l.

(Chapter 7) For any two ideals a and b we have N(ab) = N(a)N(b).
(Chapter 7) For any ideal a we have a|(N(a)).



Multiplying ideals. Prime ideals.

Let a,b be ideals in Og. Then we define the product ab to consist of all
finite sums Zle a;b; with a; € a and b; € b. Let a,b be two ideals in
Ok. Then we say that b|a if there is an ideal ¢ such that a = be.

If bla then a C b. (The converse is also true: see Chapter 5.)

An ideal p in Ok is prime if it is not Og = (1), and if zy € p implies
that either x or y lies in p.

An ideal p is prime if and only if the following is true: whenever ab C p,
either a Cp or b C p.

In Ok, all prime ideals are maximal. In particular, if p and q are two

prime ideals with p C q, then p = q.

Chapter 5: Unique factorisation into prime ideals

Theorem: Let K be a number field with ring of integers Ok . Then any non-zero

proper ideal a admits a unique factorisation a = pj - - - px into prime ideals.

Other related facts about ideals in Ok .

(“Inverses”) a C b if and only if bla.

(Containment is the same as division) Let a be an ideal. Then there is
an ideal b such that ab is principal.

(Cancellation) Suppose that ac = ac’. Then ¢ = ¢’.

Let p be a prime ideal, and suppose that plab. Then pla or pl|b.

Every prime ideal p occurs as the prime factor of a unique (p), where p

is some rational prime.

Chapter 9: Factoring into prime ideals in practice

Let p be a rational prime. Suppose (p) = p7* - - p¢ for distinct prime ideals p;

and positive integer exponents e;. Each N(p;) must equal some power p/i of p. We
have n =Y, e; fi.

Basic language:

If » = n (so all the e;, f; are equal to 1), p is said to split completely in
K.

If e; > 1 for some ¢ then p is said to ramify.

If r=1and e; =n (so fi = 1) then p is said to be totally ramified in K.
If r=1and e; =1 (so fi = n) then p is said to be inert in K. In this

case (p) is itself a prime ideal.
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Dedekind’s lemma: Let K be a number field of degree n. Suppose that Og =
Z[a] for some a. Let m(X) € Z[X] be the minimal polynomial of o. Let m(X) €
F,[X] be the reduction of m mod p, and suppose that this factors into distinct irre-
ducible polynomials (over F,) as g; (X)¢* - --§,.(X)®", where the g,;(X) are distinct.
Then the factorisation of (p) into distinct prime ideals is p7* ---pé, where p; =

(p, gi(a)), and here g; is an arbitrary lift of g, to Z[X]. Moreover, N(p;) = pic&Ji.

Strateqy for factoring a general ideal a.
e Pick some a € a. Then af(«a). Since (a)|(Ng/g()), we have a|(m) where
m = Ng/g(a) is a rational integer.
e Factor m into rational primes p;, then apply Dedekind’s lemma to each
(pi)-
e We now have a prime ideal factorisation of a multiple of a. Now figure

out which of these prime ideals actually occur as divisors of a.

Chapter 10: The class group

Definitions and key facts.

e Suppose that a,b are ideals in Ox. We write a ~ b if there are principal
ideals (z), (y) such that a(z) = b(y). This is an equivalence relation.

e The ideal class group CI(K) is Ideals(Ok)/ ~. Equivalence classes are
denoted by square brackets [a], and these are called ideal classes. Note
that all principal ideals lie in the same class.

e The product operation on ideals descends to give a well-defined product
on ideal classes, thus [a] - [b] = [ab]. This turns CI(K) into a group, called
the ideal class group of K.

e CI(K) is trivial if and only if Ok is a PID (if and only if Ok is a UFD).

e The class group is finite. hx := | C1(K)] is called the class number of K.

The Minkowski constant My . Let K be a number field with embeddings
01y...,0, : K — C. Write r; for the number of real embeddings o; : K — C,
and ro the number of pairs of conjugate complex embeddings o; — C. (An embed-
ding is deemed real if its image is contained in R, and complex otherwise). Note
that 1 + 2r, = n. Then we define the Minkowski constant

4 . n!
M= (22 /]
T on
where Ak is the discriminant of K.

The Minkowski constant for quadratic fields. Let Q(v/d), d # 1 a squarefree

integer, be a quadratic field. Then Mg is given as follows:

(i) If d > 0 and d = 2, 3(mod 4), Mg = Vd;
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(i) If d > 0 and d = 1(mod 4), Mg = Vd;
(iii) If d < 0 and d = 2,3(mod 4), Mg = 2./|d[;
(iv) If d < 0 and d = 1(mod 4), Mg = 2./]d|.

™

Minkowski bound. Let K be a number field with Minkwoski constant M. Then
every class in C1(K) contains an ideal a with N(a) < Mg. Thus CI(K) is generated
by (the identity and) the prime ideals p dividing the principal ideals (p), where p

is a rational prime of size at most M.

General procedure for computing class groups.

e Observe the basic features of K (ring of integers, integral basis, discrimi-
nant etc) and write down the Minkowski constant M. By the Minkowski
bound, generators for C1(K) may be found amongst the prime ideal di-
visors of (p), p < Mk.

e Factor all of the ideals (p), where p < Mk is a rational prime, using
Dedekind’s lemma. This will give an explicit list of prime ideals generat-
ing Cl(K).

e Figure out what relations there are, in the ideal class group, between the
prime ideals generated in this way (this can often be more an art than a
science).

e See Chapter 11 for further discussion and many examples.



