
B3.4 Algebraic Number Theory: Condensed version.

This document contains the basic definitions and results from the course, in

condensed form with no examples or proofs. It should be more-or-less sufficient for

attempting the example sheets. Of course, you can refer to the full notes if you

need to.

Chapter 1: Algebraic numbers

Algebraic numbers. Minimal polynomials.

• A complex number α is algebraic if it is the solution to some polyno-

mial equation with coefficients in Q. The set of all algebraic numbers is

denoted by Q.

• Suppose that α ∈ Q. Then there is a unique nonzero monic irreducible

polynomial mα(X) satisfied by α, which we call the minimal polynomial

of α. If f ∈ Q[X] is any other polynomial satisfied by α then mα|f .
• Let α ∈ C. Then α is algebraic if, and only if, [Q(α) : Q] < ∞. Suppose

that α is algebraic. Then Q(α) = Q[α]. Suppose that mα, the minimal

polynomial for α, has degree n. Then a basis for Q(α) as a vector space

over Q is 1, α, . . . , αn−1, that is to say Q(α) may be identified with the

polynomials in α of degree < n, and hence [Q(α) : Q] = degmα = n.

• Suppose that α satisfies an equation of degree n over Q. Then [Q(α) :

Q] 6 n.

• Suppose that α, β are algebraic. Then [Q(α, β) : Q] 6 [Q(α) : Q][Q(β) :

Q]. The algebraic numbers Q are a field.

Number fields.

• A number field K is a subfield of C which is a finite degree extension of

Q.

• Let α ∈ C. Then α is algebraic if and only if it lies in some number field

K.

• (Primitive element theorem) Every number field K is of the form Q(θ)

for some algebraic number θ.

• Quadratic fields: every field of degree 2 over Q is of the form Q(
√
d)

for d a squarefree integer (not necessarily positive). These fields are all

distinct.

Conjugates and embeddings.

• Suppose that α is an algebraic number with minimal polynomial mα of

degree n. Then the roots of mα are called the conjugates of α. The

conjugates are distinct.
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• An embedding σ : K → C is a(n injective) field homomorphism.

• Let K = Q(θ) be a number field of degree n. Then any embedding

σ : K → C maps θ to one of its conjugates θi. Conversely, for each i there

is a unique embedding σi : K → C with σ(θ) = θi. In particular, K has

exactly n distinct embeddings. We will always denotes them σ1, . . . , σn :

K → C , with σ1 being the identity.

Norm.

• If α ∈ K, we define the norm NK/Q(α) :=
∏n

i=1 σi(α).

• Basic facts: NK/Q(αβ) = NK/Q(α)NK/Q(β), NK/Q(γ) = 0 if and only if

γ = 0; NK/Q(q) = qn for q ∈ Q

• The norm takes values in Q.

• NK/Q(α) is the determinant of the multiplication-by-α map as a linear

map.

Trace.

• If α ∈ K, we define the trace NK/Q(α) :=
∑n

i=1 σi(α).

• The trace takes values in Q.

Discriminants.

• Let e1, . . . , en be a basis for K over Q. Then we define the discrimi-

nant discK/Q(e1, . . . , en) to be (detM)2, where M = M(e1, . . . , en) is

the matrix with Mij = σi(ej).

• discK/Q(e1, . . . , en) 6= 0.

• We have discK/Q(e1, . . . , en) = det((trK/Q(eiej)i,j).

• Consequently, discK/Q(e1, . . . , en) ∈ Q.

• Suppose that e1, . . . , en and e′1, . . . , e
′
n ∈ K are related by e′j =

∑

k Akjek,

where the matrix A has rational entries. Then

discK/Q(e
′
1, . . . , e

′
n) = (detA)2 discK/Q(e1, . . . , en).

Chapter 2: Algebraic integers

Algebraic integers.

• Suppose that α ∈ Q is an algebraic number. Then α is an algebraic

integer if it satisfies a monic polynomial in Z[X]. The set of algebraic

integers is denoted by O.

• Let α be an algebraic number. Then α is an algebraic integer if and only

if its minimal polynomial mα has integer coefficients. In particular, a

rational number is an algebraic integer if and only if it is an integer, that

is to say O ∩Q = Z.

• The algebraic integers O form a ring.
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• Suppose that α ∈ Q. Then some integer multiple of α is an algebraic

integer.

• Let K be a number field. OK := O ∩K.

• Let σ1, . . . , σn → C be the embeddings of K. Suppose that α ∈ OK .

Then σi(α) is an algebraic integer.

• If α ∈ OK then NK/Q(α) ∈ Z and trK/Q(α) ∈ Z.

• Suppose that e1, . . . , en ∈ OK . Then discK/Q(e1, . . . , en) ∈ Z.

Units.

• Let K be a number field, and OK its ring of integers. Note that OK

(being contained in a field) is an integral domain. A unit is an element

u for which there is v ∈ OK with uv = 1. Equivalently, the inverse u−1

(in the field K) in fact lies in OK . It is easy to see that the units form

a group under multiplication. We will sometimes write U(OK) for the

group of units in OK .

• u ∈ OK is a unit if and only if NK/Q(u) = ±1.

Integral bases. Theorem: Suppose K has degree n. Then OK is a free abelian

group of rank n, by which we mean that there are e1, . . . , en such that OK =
⊕n

i=1 Zei (that is, the ei lie in OK and every element of OK is an integer combina-

tion of the ei in precisely one way). In this situation, e1, . . . , en is called an integral

basis for OK .

Discriminant of a number field. discK/Q(e1, . . . , en) does not depend on the

choice of integral basis e1, . . . , en, and therefore it is an invariant of the number

field. It is called the discriminant of K and denoted ∆K .

Quadratic fields. Let K = Q(
√
d), d 6= 1 squarefree. The we have the following

proposition. An integral basis for K is given by

• 1 and
√
d if d ≡ 2, 3(mod 4);

• 1 and 1
2 (1 +

√
d) if d ≡ 1(mod 4).

The discriminant ∆K is given as follows:

• 4d if d ≡ 2, 3(mod 4);

• d if d ≡ 1(mod 4).

Computing an integral basis. The following lemma is useful. Suppose that K is a

number field and that e1, . . . , en are elements of OK , independent over Q, which do

not form an integral basis. Then there exists a prime p with p2| discK/Q(e1, . . . , en)

and integers m1, . . . ,mn ∈ {0, . . . , p − 1}, not all zero, such that 1
p (m1e1 + · · · +

mnen) ∈ OK . In particular, if e1, . . . , en ∈ OK and discK/Q(e1, . . . , en) is nonzero

and squarefree, e1, . . . , en are an integral basis for OK .
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Chapter 3: Irreducibles and factorisation

• An element x ∈ OK is irreducible if it is not a unit and if, whenever

x = yz with y, z ∈ OK , then one of y, z is a unit.

• Every x ∈ OK may be factored into irreducibles in at least one way.

• OK is a unique factorisation domain (UFD) if factorisation into irre-

ducibles is unique, up to units and ordering of the factors.

• OK is a UFD for various small examples such as K = Q(i),Q(
√
−2), but

need not be in general. For instance, OQ(
√
−5) is not a UFD.

Chapter 4: Ideals and their basic properties

Ideals.

• An ideal a in OK is a subset which is a subgroup under addition, and

which is closed under multiplication by elements of OK . We will some-

times write Ideals(OK) for the set of ideals in OK . Given α ∈ OK , we

may form the principal ideal (α) := {αx : x ∈ OK}.
• The map ι : OK → Ideals(OK) which associates α ∈ OK to the principal

ideal (α) is “an embedding up to units”. (More precisely, ι induces an

injective map OK/U(OK) → Ideals(OK).)

• If the map ι : OK → Ideals(OK) is surjective, that is to say if every ideal

is a principal ideal, then OK is said to be a principal ideal domain (PID).

(Groups, Rings and Modules) A PID is a UFD, but the converse is not

true in general.

• (Chapter 6) The converse is true in number fields: if OK is a UFD, then

it is a PID.

Basic properties.

• Let a be a non-zero ideal in OK . Then a contains a non-zero rational

integer a, and thus the principal ideal (a) is contained in a.

• Let a be a nonzero ideal. Then the quotient ring OK/a is finite. In

particular, a is a finite-index Z-submodule of OK .

• Every nonzero ideal a is a free Z-module of rank n = [K : Q].

Norms of ideals.

• Let a be a nonzero ideal in OK . Then we define the norm N(a) to be

|OK/a|.
• Suppose that a = (α) is a principal ideal, for some α ∈ OK \ {0}. Then

N(a) = |NK/Q(α)|.
• (Chapter 7) For any two ideals a and b we have N(ab) = N(a)N(b).

• (Chapter 7) For any ideal a we have a|(N(a)).
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Multiplying ideals. Prime ideals.

• Let a, b be ideals in OK . Then we define the product ab to consist of all

finite sums
∑k

i=1 aibi with ai ∈ a and bi ∈ b. Let a, b be two ideals in

OK . Then we say that b|a if there is an ideal c such that a = bc.

• If b|a then a ⊆ b. (The converse is also true: see Chapter 5.)

• An ideal p in OK is prime if it is not OK = (1), and if xy ∈ p implies

that either x or y lies in p.

• An ideal p is prime if and only if the following is true: whenever ab ⊆ p,

either a ⊆ p or b ⊆ p.

• In OK , all prime ideals are maximal. In particular, if p and q are two

prime ideals with p ⊆ q, then p = q.

Chapter 5: Unique factorisation into prime ideals

Theorem: Let K be a number field with ring of integers OK . Then any non-zero

proper ideal a admits a unique factorisation a = p1 · · · pk into prime ideals.

Other related facts about ideals in OK .

• (“Inverses”) a ⊂ b if and only if b|a.
• (Containment is the same as division) Let a be an ideal. Then there is

an ideal b such that ab is principal.

• (Cancellation) Suppose that ac = ac′. Then c = c′.

• Let p be a prime ideal, and suppose that p|ab. Then p|a or p|b.
• Every prime ideal p occurs as the prime factor of a unique (p), where p

is some rational prime.

Chapter 9: Factoring into prime ideals in practice

Let p be a rational prime. Suppose (p) = pe11 · · · perr for distinct prime ideals pi

and positive integer exponents ei. Each N(pi) must equal some power pfi of p. We

have n =
∑r

i=1 eifi.

Basic language:

• If r = n (so all the ei, fi are equal to 1), p is said to split completely in

K.

• If ei > 1 for some i then p is said to ramify.

• If r = 1 and e1 = n (so f1 = 1) then p is said to be totally ramified in K.

• If r = 1 and e1 = 1 (so f1 = n) then p is said to be inert in K. In this

case (p) is itself a prime ideal.
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Dedekind’s lemma: Let K be a number field of degree n. Suppose that OK =

Z[α] for some α. Let m(X) ∈ Z[X] be the minimal polynomial of α. Let m(X) ∈
Fp[X] be the reduction of m mod p, and suppose that this factors into distinct irre-

ducible polynomials (over Fp) as g1(X)e1 · · · gr(X)er , where the gi(X) are distinct.

Then the factorisation of (p) into distinct prime ideals is pe11 · · · perr , where pi =

(p, gi(α)), and here gi is an arbitrary lift of gi to Z[X]. Moreover, N(pi) = pdeg g
i .

Strategy for factoring a general ideal a.

• Pick some α ∈ a. Then a|(α). Since (α)|(NK/Q(α)), we have a|(m) where

m = NK/Q(α) is a rational integer.

• Factor m into rational primes pi, then apply Dedekind’s lemma to each

(pi).

• We now have a prime ideal factorisation of a multiple of a. Now figure

out which of these prime ideals actually occur as divisors of a.

Chapter 10: The class group

Definitions and key facts.

• Suppose that a, b are ideals in OK . We write a ∼ b if there are principal

ideals (x), (y) such that a(x) = b(y). This is an equivalence relation.

• The ideal class group Cl(K) is Ideals(OK)/ ∼. Equivalence classes are

denoted by square brackets [a], and these are called ideal classes. Note

that all principal ideals lie in the same class.

• The product operation on ideals descends to give a well-defined product

on ideal classes, thus [a] · [b] = [ab]. This turns Cl(K) into a group, called

the ideal class group of K.

• Cl(K) is trivial if and only if OK is a PID (if and only if OK is a UFD).

• The class group is finite. hK := |Cl(K)| is called the class number of K.

The Minkowski constant MK . Let K be a number field with embeddings

σ1, . . . , σn : K → C. Write r1 for the number of real embeddings σi : K → C,

and r2 the number of pairs of conjugate complex embeddings σi → C. (An embed-

ding is deemed real if its image is contained in R, and complex otherwise). Note

that r1 + 2r2 = n. Then we define the Minkowski constant

MK := (
4

π
)r2

n!

nn

√

|∆K |,

where ∆K is the discriminant of K.

The Minkowski constant for quadratic fields. Let Q(
√
d), d 6= 1 a squarefree

integer, be a quadratic field. Then MK is given as follows:

(i) If d > 0 and d ≡ 2, 3(mod 4), MK =
√
d;
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(ii) If d > 0 and d ≡ 1(mod 4), MK = 1
2

√
d;

(iii) If d < 0 and d ≡ 2, 3(mod 4), MK = 4
π

√

|d|;
(iv) If d < 0 and d ≡ 1(mod 4), MK = 2

π

√

|d|.

Minkowski bound. Let K be a number field with Minkwoski constant MK . Then

every class in Cl(K) contains an ideal a with N(a) 6 MK . Thus Cl(K) is generated

by (the identity and) the prime ideals p dividing the principal ideals (p), where p

is a rational prime of size at most MK .

General procedure for computing class groups.

• Observe the basic features of K (ring of integers, integral basis, discrimi-

nant etc) and write down the Minkowski constantMK . By the Minkowski

bound, generators for Cl(K) may be found amongst the prime ideal di-

visors of (p), p 6 MK .

• Factor all of the ideals (p), where p 6 MK is a rational prime, using

Dedekind’s lemma. This will give an explicit list of prime ideals generat-

ing Cl(K).

• Figure out what relations there are, in the ideal class group, between the

prime ideals generated in this way (this can often be more an art than a

science).

• See Chapter 11 for further discussion and many examples.


