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These notes trace a path through material which is covered in more detail in the book
for the course which is:

F. Kirwan, Complex Algebraic Curves, LMS Student Texts 23, Cambridge 1992, Chap-
ters 2–6, £36.29 from Amazon.
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1 Projective spaces

1.1 Basic definitions

Definition 1 Let V be a vector space. The projective space P (V ) of V is the set of
1-dimensional vector subspaces of V .

Definition 2 If the vector space V has dimension n + 1, then P (V ) is a projective
space of dimension n. A 1-dimensional projective space is called a projective line, and
a 2-dimensional one a projective plane.

For most of the course, the field F of scalars for our vector spaces will be the complex
numbers C. Our intuition is best served, however, by thinking of the real case. So the
projective space of R3 is the set of lines through the origin. Each such line intersects
the unit sphere S2 = {x ∈ R3 :

∑
i x

2
i = 1} in two points ±u, so from this point

of view P (R3) is S2 with antipodal points identified. Since each line intersects the
lower hemisphere, we could equally remove the upper hemisphere and then identify
opposite points on the equatorial sphere.

In the B3a Geometry of Surfaces course this is the way we think of the projective
plane, but it is less appropriate for an algebraic geometry course. Still, it does explain
why we should think of P (Rn+1) as n-dimensional. In what follows we shall write
P (F n+1) as Pn (usually for F = C) to make this more plain.

A better approach for our purposes is the notion of a representative vector for a point
of P (V ). Any 1-dimensional subspace of V is the set of multiples of a non-zero vector
v ∈ V . We then say that v is a representative vector for the point [v] ∈ P (V ). Clearly
if λ 6= 0 then λv is another representative vector so

[λv] = [v].

Now suppose we choose a basis {v0, . . . , vn} for V . The vector v can be written

v =
n∑
i=0

xivi
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and the n+ 1-tuple (x0, . . . , xn) provides the coordinates of v ∈ V . If v 6= 0 we write
the corresponding point [v] ∈ P (V ) as [v] = [x0, x1, . . . , xn] and these are known as
homogeneous coordinates for a point in P (V ). Again, for λ 6= 0

[λx0, λx1, . . . , λxn] = [x0, x1, . . . , xn].

Homogeneous coordinates give us another point of view of projective space. Let
U0 ⊂ P (V ) be the subset of points with homogeneous coordinates [x0, x1, . . . , xn]
such that x0 6= 0. (Since if λ 6= 0, x0 6= 0 if and only if λx0 6= 0, so this is a
well-defined subset, independent of the choice of (x0, . . . , xn)). Then, in U0,

[x0, x1, . . . , xn] = [x0, x0(x1/x0), . . . , x0(xn/x0)] = [1, (x1/x0), . . . , (xn/x0)].

Thus we can uniquely represent any point in U0 by one of the form [1, y1, . . . , yn], so

U0
∼= Cn.

The points we have missed out are those for which x0 = 0, but these are the 1-
dimensional subspaces of the n-dimensional vector subspace spanned by v1, . . . , vn,
which is a projective space of one lower dimension. So we can write

Pn = Cn ∪Pn−1

A large chunk of complex projective n-space is thus our familiar Cn.

Example: The simplest example of this is the case n = 1. Since a one-dimensional
projective space is a single point (if dimV = 1, V is the only 1-dimensional subspace)
the projective line P1 = C ∪ pt. Since [x0, x1] maps to x1/x0 ∈ C we usually call
this extra point [0, 1] the point ∞. The projective line is what is called in complex
analysis the extended complex plane C ∪ {∞}.

Having said that, there are many different copies of Cn inside Pn, for we could
have chosen xi instead of x0, or coordinates with respect to a totally different basis.
Projective space should normally be thought of as a homogeneous object, without
any distinguished copy of Cn inside.

We defined U0 above as the subset of Pn where x0 6= 0, so we can similarly define
subsets Ui where xi 6= 0. Any point of Pn lies in one of these sets. We can use them
to make Pn into a topological space – define a set V to be open if V ∩ Ui is an open
set in Cn under the map

[x0, x1, . . . , xn] 7→ (x0/xi, . . . , 1, . . . xn/xi).
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1.2 Linear subspaces

Definition 3 A linear subspace of the projective space P (V ) is the set of 1-dimen-
sional vector subspaces of a vector subspace U ⊆ V .

Note that a linear subspace is a projective space in its own right, the projective space
P (U).

Recall that a 1-dimensional projective space is called a projective line. We have the
following two propositions which show that projective lines behave nicely:

Proposition 1 Through any two distinct points in a projective space there passes a
unique projective line.

Proof: Let P (V ) be the projective space and x, y ∈ P (V ) distinct points. Let u, v
be representative vectors. Then u, v are linearly independent for otherwise u = λv
and

x = [u] = [λv] = [v] = y.

Let U ⊆ V be the 2-dimensional vector space spanned by u and v, then P (U) ⊂ P (V )
is a line containing x and y.

Suppose P (U ′) is another such line, then u ∈ U ′ and v ∈ U ′ and so the space spanned
by u, v (namely U) is a subspace of U ′. But U and U ′ are 2-dimensional so U = U ′

and the line is thus unique. 2

Proposition 2 In a projective plane, two distinct projective lines intersect in a
unique point.

Proof: Let the projective plane be P (V ) where dimV = 3. Two lines are defined
by P (U1), P (U2) where U1, U2 are distinct 2-dimensional subspaces of V . Now from
elementary linear algebra

dimV ≥ dim(U1 + U2) = dimU1 + dimU2 − dim(U1 ∩ U2)

so that
3 ≥ 2 + 2− dim(U1 ∩ U2)

and
dim(U1 ∩ U2) ≥ 1.
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But since U1 and U2 are 2-dimensional,

dim(U1 ∩ U2) ≤ 2

with equality if and only if U1 = U2. As the lines are distinct, equality doesn’t occur
and so we have the 1-dimensional vector subspace

U1 ∩ U2 ⊂ V

which is the required point of intersection in P (V ). 2

Any 2-dimensional subspace of C3 is defined by a single equation

a0x0 + a1x1 + a2x2 = 0

and if a1 and a2 are not both zero, this intersects U0
∼= C2 (the points where x0 6= 0)

where
0 = a0 + a1(x1/x0) + a2(x2/x0) = a0 + a1y1 + a2y2

which is an ordinary line in C2 with coordinates y1, y2. The projective line has one
extra point on it, where x0 = 0, i.e. the point [0, a2,−a1]. Conversely, any line in C2

extends uniquely to a projective line in P2.

Two lines in C2 are parallel if they are of the form

a0 + a1y1 + a2y2 = 0, b0 + a1y1 + a2y2 = 0

but then the added point to make them projective lines is the same one: [0, a2,−a1],
so the two lines meet at a single point on the “line at infinity” P1.

One of our goals will be to have good theorems about the number of points of inter-
section of two curves, so introducing the projective plane gives us a start: any two
distinct lines meet in a single point.

1.3 Projective transformations

If V,W are vector spaces and T : V → W is a linear transformation, then a vector
subspace U ⊆ V gets mapped to a vector subspace T (U) ⊆ W . If T has a non-
zero kernel, T (U) may have dimension less than that of U , but if kerT = 0 then
dimT (U) = dimU . In particular, if U is one-dimensional, so is T (U) and so T gives
a well-defined map

τ : P (V )→ P (W ).
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Definition 4 A projective transformation from P (V ) to P (W ) is the map τ defined
by an invertible linear transformation T : V → W .

Note that if λ 6= 0, then λT and T define the same linear transformation since

[(λT )(v)] = [λ(T (v))] = [T (v)].

The converse is also true: suppose T and T ′ define the same projective transformation
τ . Take a basis {v0, . . . , vn} for V , then since

τ([vi]) = [T ′(vi)] = [T (vi)]

we have
T ′(vi) = λiT (vi)

for some non-zero scalars λi and also

T ′(
n∑
i=0

vi) = λT (
n∑
i=0

vi)

for some non-zero λ. But then

n∑
i=0

λT (vi) = λT (
n∑
i=0

vi) = T ′(
n∑
i=0

vi) =
n∑
i=0

λiT (vi).

Since T is invertible, T (vi) are linearly independent, so this implies λi = λ. Then
T ′(vi) = λT (vi) for all basis vectors and hence for all vectors and so

T ′ = λT.

Example: You are, in fact, already familiar with one class of projective transfor-
mations – Möbius transformations of the extended complex plane. These are just
projective transformations of the complex projective line P1 to itself. We describe
points in P1 by homogeneous coordinates [z0, z1], and then a projective transforma-
tion τ is given by

τ([z0, z1]) = ([az0 + bz1, cz0 + dz1])

where ad− bc 6= 0. This corresponds to the invertible linear transformation

T =

(
a b
c d

)
.

8



It is convenient to write P1 = C ∪ {∞} where the point ∞ is now the 1-dimensional
space z1 = 0. Then if z1 6= 0, [z0, z1] = [z, 1] and

τ([z, 1]) = [az + b, cz + d]

and if cz + d 6= 0 we can write

τ([z, 1]) =

[
az + b

cz + d
, 1

]
which is the usual form of a Möbius transformation, i.e.

z 7→ az + b

cz + d
.

The advantage of projective geometry is that the point ∞ = [1, 0] plays no special
role. If cz + d = 0 we can still write

τ([z, 1]) = [az + b, cz + d] = [az + b, 0] = [1, 0]

and if z =∞ (i.e. [z0, z1] = [1, 0]) then we have

τ([1, 0]) = [a, c].

Example: If we view the projective plane P2 in the same way, we get some less
familiar transformations. Write

P2 = C2 ∪P1

where the projective line at infinity is x0 = 0. A linear transformation T : C3 → C3

can then be written as the matrix

T =

 d b1 b2

c1 a11 a12

c2 a21 a22


and its action on [1, x, y] can be expressed, with v = (x, y) ∈ C2, as

v 7→ 1

b · v + d
(Av + c)

where A is the 2 × 2 matrix aij and b, c the vectors (b1, b2), (c2, c2). These are the
2-dimensional versions of Möbius transformations. Each one can be considered as a
composition of
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• an invertible linear transformation v 7→ Av

• a translation v 7→ v + c

• an inversion v 7→ v/(b · v + d)

Clearly it is easier here to consider projective transformations defined by 3 × 3 ma-
trices, just ordinary linear algebra.

However, we can see from this viewpoint that the projective transformations that
take C2 to itself are those with b1 = b2 = 0 and then the action on C2 is

v 7→ d−1(Av + c)

– a combination of linear transformation and translation. These are known as affine
transformations, so in a natural way the complement of a line in P2 is an affine space
( a “vector space without a distinguished origin”.) The subsets Ui are called affine
subsets of P2.

Example: A more geometric example of a projective transformation is to take two
lines P (U), P (U ′) in a projective plane P (V ) and let O ∈ P (V ) be a point disjoint
from both. For each point x ∈ P (U), the unique line joining O to x intersects P (U ′)
in a unique point X = τ(x). Then

τ : P (U)→ P (U ′)

is a projective transformation.

To see why, let W be the 1-dimensional subspace of V defined by O ∈ P (V ). Then
since O does not lie in P (U ′), W ∩ U ′ = 0. This means that

V = W ⊕ U ′.

Now take a ∈ U as a representative vector for x. It can be expressed uniquely as
a = w + a′, with w ∈ W and a′ ∈ U ′. The projective line joining O to x is defined
by the 2-dimensional vector subspace of V spanned by w and a and so a′ = a− w is
a representative vector for τ(x). In linear algebra terms the map a 7→ a′ is just the
linear projection map P : V → U ′ restricted to U . It has zero kernel since O does
not lie in P (U), and hence W ∩U = 0. Thus T : U → U ′ is an isomorphism and τ is
a projective transformation.

If we restrict to the points in R2, then this is what this projection from O looks like:
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O

A linear transformation of a vector space of dimension n is determined by its value on
n linearly independent vectors. A similar statement holds in projective space. The
analogue of linear independence is the following

Definition 5 Let P (V ) be an n-dimensional projective space, then n + 2 points in
P (V ) are said to be in general position if each subset of n+1 points has representative
vectors in V which are linearly independent.

Example: Any two distinct points in a projective line are represented by linearly
independent vectors, so any three distinct points are in general position.

Theorem 3 If X1, . . . , Xn+2 are in general position in P (V ) and Y1, . . . , Yn+2 are
in general position in P (W ), then there is a unique projective transformation τ :
P (V )→ P (W ) such that τ(Xi) = Yi, 1 ≤ i ≤ n+ 2.

Proof: First choose representative vectors v1, . . . , vn+2 ∈ V for the points X1, . . . ,
Xn+2 in P (V ). By general position the first n + 1 vectors are linearly independent,
so they form a basis for V and there are scalars λi such that

vn+2 =
n+1∑
i=1

λivi (1)

If λi = 0 for some i, then (1) provides a linear relation amongst a subset of n + 1
vectors, which is not possible by the definition of general position, so we deduce that
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λi 6= 0 for all i. This means that each λivi is also a representative vector for Xi, so
(1) tells us that we could have chosen representative vectors vi such that

vn+2 =
n+1∑
i=1

vi (2)

Moreover, given vn+2, these vi are unique for

n+1∑
i=1

vi =
n+1∑
i=1

µivi

implies µi = 1 since v1, . . . , vn+1 are linearly independent.

[Note: This is a very useful idea which can simplify the solution of many problems ].

Now do the same for the points Y1, . . . Yn+2 in P (W ) and choose representative vectors
such that

wn+2 =
n+1∑
i=1

wi (3)

Since v1, . . . , vn+1 are linearly independent, they form a basis for V so there is a
unique linear transformation T : V → W such that Tvi = wi for 1 ≤ i ≤ n+ 1. Since
w1, . . . , wn+1 are linearly independent, T is invertible. Furthermore, from (2) and (3)

Tvn+2 =
n+1∑
i=1

Tvi =
n+1∑
i=1

wi = wn+2

and so T defines a projective transformation τ such that τ(Xi) = Yi for all n + 2
vectors vi.

To show uniqueness, suppose T ′ defines another projective transformation τ ′ with the
same property. Then T ′vi = µiwi and

µn+2wn+2 = T ′vn+2 =
n+1∑
i=1

T ′vi =
n+1∑
i=1

µiwi.

But by the uniqueness of the representation (3), we must have µi/µn+2 = 1, so that
T ′vi = µn+2Tvi and τ ′ = τ . 2

Examples:
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1. In P1 take the three distinct points [0, 1], [1, 1], [1, 0] and any other three distinct
points X1, X2, X3. Then there is a unique projective transformation taking X1, X2, X3

to [0, 1], [1, 1], [1, 0]. In the language of complex analysis, we can say that there is a
unique Möbius transformation taking any three distinct points to 0, 1,∞.

2. In any projective line we could take the three points [0, 1], [1, 1], [1, 0] and then
for X1, X2, X3 any permutation of these. Now projective transformations of a space
to itself form a group under composition, so we see that the group of projective
transformations of a line to itself always contains a copy of the symmetric group S3.
In fact if we take the scalars to be the field Z2 with two elements 0 and 1, the only
points on the projective line are [0, 1], [1, 1], [1, 0], and S3 is the full group of projective
transformations.

As an example of the use of the notion of general position, here is a classical theorem
called Desargues’ theorem. In fact, Desargues (1591-1661) is generally regarded as the
founder of projective geometry. The proof we give here uses the method of choosing
representative vectors above.

Theorem 4 (Desargues) Let A,B,C,A′, B′, C ′ be distinct points in a projective space
P (V ) such that the lines AA′, BB′ CC ′ are distinct and concurrent. Then the three
points of intersection AB ∩ A′B′, BC ∩B′C ′, CA ∩ C ′A′ are collinear.

Proof: Let P be the common point of intersection of the three lines AA′, BB′, CC ′.
Since P,A,A′ lie on a projective line and are distinct, they are in general position, so
as in (2) we choose representative vectors p, a, a′ such that

p = a+ a′.

These are vectors in a 2-dimensional subspace of V . Similarly we have representative
vectors b, b′ for B,B′ and c, c′ for C,C ′ with

p = b+ b′ p = c+ c′.

It follows that a+ a′ = b+ b′ and so

a− b = b′ − a′ = c′′

and similarly
b− c = c′ − b′ = a′′ c− a = a′ − c′ = b′′.
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But then
c′′ + a′′ + b′′ = a− b+ b− c+ c− a = 0

and a′′, b′′, c′′ are linearly dependent and lie in a 2-dimensional subspace of V . Hence
the points A′′, B′′, C ′′ in P (V ) represented by a′′, b′′, c′′ are collinear.

Now since c′′ = a − b, c′′ lies in the 2-dimensional space spanned by a and b, so C ′′

lies on the line AB. Since c′′ also equals b′ − a′, C ′′ lies on the line A′B′ and so c′′

represents the point AB ∩ A′B′. Repeating for B′′ and A′′ we see that these are the
three required collinear points. 2

Desargues’ theorem is a theorem in projective space which we just proved by linear
algebra – linear independence of vectors. However, if we take the projective space
P (V ) to be the real projective plane P 2(R) and then just look at that part of the
data which lives in R2, we get a theorem about perspective triangles in the plane:

Here is an example of the use of projective geometry – a “higher form of geometry”
to prove simply a theorem in R2 which is less accessible by other means. Another
theorem in the plane for which these methods give a simple proof is Pappus’ theorem.
Pappus of Alexandria (290-350) was thinking again of plane Euclidean geometry, but
his theorem makes sense in the projective plane since it only discusses collinearity
and not questions about angles and lengths. It means that we can transform the
given configuration by a projective transformation to a form which reduces the proof
to simple linear algebra calculation:

Theorem 5 (Pappus) Let A,B,C and A′, B′, C ′ be two pairs of collinear triples of
distinct points in a projective plane. Then the three points BC ′∩B′C,CA′∩C ′A,AB′∩
A′B are collinear.
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Proof: Without loss of generality, we can assume that A,B,C ′, B′ are in general
position. If not, then two of the three required points coincide, so the conclusion is
trivial. By Theorem 3, we can then assume that

A = [1, 0, 0], B = [0, 1, 0], C ′ = [0, 0, 1], B′ = [1, 1, 1].

The line AB is defined by the 2-dimensional subspace {(x0, x1, x2) ∈ F 3 : x2 = 0}, so
the point C, which lies on this line, is of the form C = [1, c, 0] and c 6= 0 since A 6= C.
Similarly the line B′C ′ is x0 = x1, so A′ = [1, 1, a] with a 6= 1.

The line BC ′ is defined by x0 = 0 and B′C is defined by the span of (1, 1, 1) and
(1, c, 0), so the point BC ′ ∩ B′C is represented by the linear combination of (1, 1, 1)
and (1, c, 0) for which x0 = 0, i.e.

(1, 1, 1)− (1, c, 0) = (0, 1− c, 1).

The line C ′A is given by x1 = 0, so similarly CA′ ∩ C ′A is represented by

(1, c, 0)− c(1, 1, a) = (1− c, 0,−ca).

Finally AB′ is given by x1 = x2, so AB′ ∩ A′B is

(1, 1, a) + (a− 1)(0, 1, 0) = (1, a, a).

But then
(c− 1)(1, a, a) + (1− c, 0,−ca) + a(0, 1− c, 1) = 0.

Thus the three vectors span a 2-dimensional subspace and so the three points lie on
a projective line. 2
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2 Plane curves

2.1 Basic definitions

From now on we will mainly work in the projective plane P2 and use homogeneous
coordinates [x, y, z] instead of [x0, x1, x2]. The equation of a line is

ax+ by + cz = 0

and this gives a well-defined subset of P2 because if we replace (x, y, z) by (λx, λy, λz)
the equation still holds.

Definition 6 A polynomial P (x, y, z) is homogeneous of degree d if

P (λx, λy, λz) = λdP (x, y, z).

Clearly P (x, y, z) = 0 is a well-defined subset of P2.

Definition 7 Let P (x, y, z) be a homogeneous polynomial of degree d > 0 with no
repeated factors, then P (x, y, z) = 0 defines a plane projective curve C in P2.

Remark: 1. The subset P (x, y, z) = 0 in P2 is non-empty because fixing y and z
we have a polynomial in x which over C always has roots. This is why we work over
the complex numbers – P (x, y, z) = x2 + y2 + z2 defines an algebraic curve over R
but it has no real points.

2. The condition of having no repeated factors is to ensure that the polynomial is
uniquely determined (up to a scalar multiple) by the curve C – obviously P (x, y, z)
and P 2(x, y, z) define the same subset. The fact that with this condition the zeros
determine P follows from Hilbert’s Nullstellensatz, which is outside the scope of this
course.

Definition 8 The curve C ⊂ P2 is said to be irreducible if P has no non-constant
factors other than a scalar multiple of itself. An irreducible plane curve D is said to
be a component of C if its defining polynomial Q divides P .

Remark: Note that this use of the word “component” is different from the topo-
logical one – two lines given by linear polynomials P,Q have non-empty intersection
so the reducible curve C defined by PQ = 0 is a connected topological space.
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Definition 9 The point [a, b, c] ∈ P2 is a singular point of C if P (a, b, c) = 0 and

∂P

∂x
(a, b, c) =

∂P

∂y
(a, b, c) =

∂P

∂z
(a, b, c) = 0.

Remark: For a homogeneous function P , differentiating P (λx, λy, λz)=λdP (x, y, z)
with respect to λ leads via the chain rule directly to Euler’s relation:

x
∂P

∂x
+ y

∂P

∂y
+ z

∂P

∂z
= dP

so that the vanishing of the partial derivatives actually implies the vanishing of P .

Example: 1. The reducible curve C defined by a pair of lines has a unique singular
point – the point of intersection – since

∂PQ

∂x
= P

∂Q

∂x
+Q

∂P

∂x

and this, and the other partial derivatives, vanish when P = Q = 0.

2. The curve x2 + y2 + z2 = 0 has no singularities since the vanishing of the partial
derivatives gives x = y = z = 0 but this does not define a point in projective space.

If [a, b, c] is not a singular point of C then at least one partial derivative is non-
vanishing. Then we define:

Definition 10 If p = [a, b, c] is a nonsingular point of C, the tangent line at p is
defined by the equation

x
∂P

∂x
(a, b, c) + y

∂P

∂y
(a, b, c) + z

∂P

∂z
(a, b, c) = 0.

At this point it may be useful to view projective curves in terms of their intersections
with one of the affine open sets Ui, say U2 where z 6= 0. Then identifying U2 with C2

via (x/z, y/z) the curve C ∩ U2 is defined by the nonhomogeneous equation

P (x, y, 1) = 0.

Conversely, the subset of C2 defined by a polynomial p(x, y) = 0 can be extended to
a homogeneous polynomial by

P (x, y, z) = zdp(
x

z
,
y

z
)

17



so long as d ≥ m + n where xmyn is the highest power in p. If the line z = 0 is not
a component of C then this gives a one-to-one correspondence, but the extra points
on C ∩ {z = 0} have to be analyzed by using one of the other open sets U0, U1.

Our definition of tangent line makes more sense in this affine open set, where we
might define the “normal direction” to p(x, y) = 0 at (a, b) by (∂p/∂x, ∂p/∂y)) and
the tangent would then be the line

(x− a)
∂p

∂x
(a, b) + (y − b)∂p

∂y
(a, b) = 0.

It is easy to check that this line is the intersection with U2 of the tangent line according
to Definition 10.

Example: The parabola y2 = 4x in R2 extends to the curve C of degree 2 in P (R3)
defined by the homogeneous polynomial

P (x, y, z) = y2 − 4xz.

We can rewrite this as
y2 − (x+ z)2 + (x− z)2

so its intersection with U1, where y 6= 0 is the curve

(x+ z)2 − (x− z)2 = 1

which in coordinates (x+z, x−z) is a hyperbola. From the point of view of projective
geometry the curve C intersects the line z = 0 in the single real point [1, 0, 0], and
the line y = 0 in two points [1, 0, 0], [0, 0, 1]. In the affine set x + z 6= 0, we have
coordinates (y/(x+ z), (x− z)/(x+ z)) and then

y2

(x+ z)2
+

(x− z)2

(x+ z)2
= 1

which is the equation of a circle. So in projective space all these curves become one
and the same type.

2.2 Conics

A conic is a plane projective curve of degree 2. It is defined by a homogeneous
quadratic form P (x, y, z). This is algebraically the same thing as:

18



Definition 11 A symmetric bilinear form on a vector space V is a map B : V ×V →
F such that

• B(v, w) = B(w, v)

• B(λ1v1 + λ2v2, w) = λ1B(v1, w) + λ2B(v2, w)

The form is said to be nondegenerate if B(v, w) = 0 for all w ∈ V implies v = 0.

If we take a basis v1, . . . , vn of V , then v =
∑

i xivi and w =
∑

i yivi so that

B(v, w) =
∑
i,j

B(vi, vj)xiyj

and so is uniquely determined by the symmetric matrix βij = B(vi, vj). The bilinear
form is nondegenerate if and only if βij is nonsingular.

We can add symmetric bilinear forms: (B+C)(v, w) = B(v, w)+C(v, w) and multiply
by a scalar (λB)(v, w) = λB(v, w) so they form a vector space isomorphic to the space
of symmetric n× n matrices which has dimension n(n + 1)/2. If we take a different
basis

wi =
∑
j

Pjivj

then
B(wi, wj) = B(

∑
k

Pkivk,
∑
`

P`jv`) =
∑
k,`

PkiB(vk, v`)P`j

so that the matrix βij = B(vi, vj) changes under a change of basis to

β′ = P TβP.

Over the real or complex numbers we can divide by 2 and then we often speak of the
quadratic form B(v, v) which determines the bilinear form since

B(v + w, v + w) = B(v, v) +B(w,w) + 2B(v, w)

Here we have the basic result:

Theorem 6 Let B be a quadratic form on a complex vector space V of dimension n.
Then there is a basis such that if v =

∑
i zivi

B(v, v) =
m∑
i=1

z2
i .

If B is non-degenerate then m = n.
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Proof: The proof is elementary – just completing the square. We note that changing
the basis is equivalent to changing the coefficients xi of v by an invertible linear
transformation.

First we write down the form in one basis, so that

B(v, v) =
∑
i,j

βijxixj

and ask: is there a term βii 6= 0?. If not, then we create one. If the coefficient of xixj
is non-zero, then putting yi = (xi + xj)/2, yj = (xi − xj)/2 we have

xixj = y2
i − y2

j

and so we get a term β′ii 6= 0.

If there is a term βii 6= 0, then we note that

1

βii
(βi1x1 + . . .+ βinxn)2 = βiix

2
i + 2

∑
k 6=i

βikxkxi +R

where R involves the xk with k 6= i. So if

yi = βi1x1 + . . .+ βinxn

then

B(v, v) =
1

βii
y2
i +B1

where B1 is a quadratic form in the n− 1 variables xk, k 6= i.

We now repeat the procedure to find a basis such that if v has coefficients y1, . . . , yn,
then

B(v, v) =
m∑
i=1

ciy
2
i .

Over C we can write zi =
√
ciyi and get a sum of squares. 2

Example: Consider the quadratic form in C3

B(v, v) = xy + yz + zx.

We put
y1 = (x+ y)/2, y2 = (x− y)/2
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to get
B(v, v) = y2

1 − y2
2 + z(2y1).

Now complete the square:

B(v, v) = (y1 + z)2 − y2
2 − z2

so that with z1 = y1 + z, z2 = iy2, z3 = iz we have z2
1 + z2

2 + z2
3 .

An invertible linear transformation of C3 defines a projective transformation of P2 so
Theorem 6 tells us that any conic is equivalent to one of the following by a projective
transformation:

• P (x, y, z) = x2 – this is the (double) line x = 0

• P (x, y, z) = x2 + y2 – this is a pair of lines x+ iy = 0, x− iy = 0

• P (x, y, z) = x2 + y2 + z2 – a nonsingular conic.

2.3 Rational parametrization of the conic

Theorem 7 Let C be a nonsingular conic in a projective plane P (V ) over the field
F , and let A be a point on C. Let P (U) ⊂ P (V ) be a projective line not containing
A. Then there is a bijection

α : P (U)→ C

such that, for X ∈ P (U),the points A,X, α(X) are collinear.

X

A

α(X)
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Proof: Suppose the conic is defined by the nondegenerate symmetric bilinear form
B. Let a ∈ V be a representative vector for A, then B(a, a) = 0 since A lies on the
conic. Let x ∈ P (U) be a representative vector for X ∈ P (U). Then a and x are
linearly independent since X does not lie on the line P (U). Extend a, x to a basis
a, x, y of V .

Now B restricted to the space spanned by a, x is not identically zero, because if it
were, the matrix of B with respect to this basis would be of the form 0 0 ∗

0 0 ∗
∗ ∗ ∗


which is singular. So at least one of B(x, x) and B(a, x) is non-zero.

Any point on the line AX is represented by a vector of the form λa+µx and this lies
on the conic C if

0 = B(λa+ µx, λa+ µx) = 2λµB(a, x) + µ2B(x, x).

When µ = 0 we get the point X. The other solution is 2λB(a, x) + µB(x, x) = 0 i.e.
the point with representative vector

w = B(x, x)a− 2B(a, x)x (4)

which is non-zero since the coefficients are not both zero.

We define the map α : P (U)→ C by

α(X) = [w]

which has the collinearity property of the statement of the Theorem. If Y ∈ C is
distinct from A, then the line AY meets the line P (U) in a unique point, so α−1 is
well-defined on this subset. By the definition of α in (4), α(X) = A if and only if
B(a, x) = 0. Since B is nonsingular f(x) = B(a, x) is a non-zero linear map from V
to F and so defines a line (the tangent to C at A), which hence meets P (U) in one
point. Thus α has a well-defined inverse and is therefore a bijection. 2

Example: Consider the case of the conic

x2 + y2 − z2 = 0.

Take A = [1, 0, 1] and the line P (U) defined by x = 0. Note that this conic and the
point and line are defined over any field since the coefficients are 0 or 1.
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A point X ∈ P (U) is of the form X = [0, 1, t] or [0, 0, 1] and the map α is

α([0, 1, t]) = [B((0, 1, t), (0, 1, t))(1, 0, 1)− 2B((1, 0, 1), (0, 1, t))(0, 1, t)]

= [1− t2, 2t, 1 + t2]

or α([0, 0, 1]) = [−1, 0, 1].

This has an interesting application if we use the field of rational numbers F = Q.
Suppose we want to find all right-angled triangles whose sides are of integer length.
By Pythagoras, we want to find positive integer solutions to

x2 + y2 = z2.

But then [x, y, z] is a point on the conic. Conversely, if [x0, x1, x2] lies on the conic,
then multiplying by the least common multiple of the denominators of the rational
numbers x0, x1, x2 gives integers such that [x, y, z] is on the conic.

But what we have seen is that any point on the conic is either [−1, 0, 1] or of the form

[x, y, z] = [1− t2, 2t, 1 + t2]

for some rational number t = p/q, so we get all integer solutions by putting

x = q2 − p2, y = 2pq, z = q2 + p2.

For example, p = 1, q = 2 gives 32 + 42 = 52 and p = 2, q = 3 gives 52 + 122 = 132.

One other consequence of Theorem 7 is that we can express a point (x, y) on the
general conic

ax2 + bxy + cy2 + dx+ ey + f = 0

in the form

x =
p(t)

r(t)
, y =

q(t)

r(t)

where p, q and r are quadratic polynomials in t. Writing x, y as rational functions of t
is why the process we have described is sometimes called the rational parametrization
of the conic. It has its uses in integration. We can see, for example, that∫

dx

x+
√
ax2 + bx+ c
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can be solved by elementary functions because if y = x+
√
ax2 + bx+ c then

(y − x)2 − ax2 − bx− c = 0

and this is the equation of a conic. We can solve it by x = p(t)/r(t), y = q(t)/r(t)
and with this substitution, the integral becomes∫

r′(t)p(t)− p′(t)r(t)
q(t)r(t)

dt

and expanding the rational integrand into partial fractions we get rational and loga-
rithmic terms after integration.
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3 Intersections of curves

3.1 Resultants

We can gain quite a lot of information about curves from Bézout’s Theorem which
says roughly that curves C and D of degrees n and m respectively intersect in mn
points. This is clearly not true in general (for example a line which is tangent to a
nonsingular conic meets it in one point, not two). This means that we have to do
some work to define carefully the intersection multiplicity and the conditions under
which the theorem holds.

The basic idea is to write

P (x, y, z) = a0(y, z) + a1(y, z)x+ . . .+ an(y, z)xn

Q(x, y, z) = b0(y, z) + b1(y, z)x+ . . .+ bm(y, z)xm

and forget for the moment the dependence of the coefficients on y, z. The condition
that two polynomials in x have a common root gives a polynomial relation on the
ai, bj and, putting y and z back in, we can find the number of solutions.

Let

p(x) = a0 + a1x+ . . .+ anx
n

q(x) = b0 + b1x+ . . .+ bmx
m

be two complex polynomials in x with an 6= 0. If they have a common factor ` then
p = `r, q = `s for polynomials r, s of degree ≤ n− 1,m− 1 respectively, and so

sp− rq = 0.

This is a linear equation for the n coefficients of r and m coefficients of s. But a
polynomial of the form sp− rq has degree ≤ m+n− 1 and so has m+n coefficients,
hence sp − rq = 0 is an equation of the form Av = 0 for a vector v ∈ Cm+n and
has a solution if and only if detA = 0. If there is a solution then sp = rq and since
deg r < deg p clearly one of the factors of p must then be a factor of q. The matrix A
appears in the following definition.
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Definition 12 The resultant R(p, q) of p(x) and q(x) is the (m + n) × (m + n)
determinant

det



a0 a1 . . . an 0 0 . . . 0
0 a0 a1 . . . an 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 a0 a1 . . . an
b0 b1 . . . bm 0 0 . . . 0
0 b0 b1 . . . bm 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 b0 b1 . . . bm


.

Example: A simple example is the condition that a polynomial p has a repeated
root α. Then if p(x) = (x−α)2r(x), its derivative is p′(x) = 2(x−α)r(x)+(x−α)2r′(x)
so p and p′ have a common root hence R(p, p′) = 0, which is the discriminant. For
example if p(x) = ax2 + bx+ c, then

R(p, p′) = det

 c b a
b 2a 0
0 b 2a

 = a(4ac− b2)

which, assuming a 6= 0, vanishes if and only if b2 − 4ac = 0.

The key feature to notice about the resultant is that it is a polynomial in the coeffi-
cients of p and q which is of degree m in the ai and degree n in the bi.

Determinants are often of more theoretical than practical value and there is another
way of writing the resultant. Suppose p, q are monic polynomials and let λ1, . . . , λn
be the roots of p(x) and µ1, . . . , µm the roots of q(x). Then∏

i,j

(λi − µj) =
∏
i

q(λi) = (−1)mn
∏
j

p(µj) (5)

clearly vanishes if p and q have a common root. For p = x2 + bx+ c, p′ = 2x+ b this
gives immediately c− b2/4.

To see the link with the resultant, note that ak is a homogeneous polynomial in λi
of degree n − k and bk a polynomial in µj of degree m − k. The (i, j) entry in the
determinant is therefore of degree dij = n + i − j if 1 ≤ i ≤ m and degree i − j if
m+ 1 ≤ i ≤ n+m. The determinant of a k × k matrix A is a sum∑

σ∈Sk

sgnσA1σ(1)A2σ(2) . . . Akσ(k)
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so in our case each sum is of degree

m∑
1

(n+ i− σ(i)) +
m+n∑
m+1

(i− σ(i)) = mn+
m+n∑

1

(i− σ(i)) = mn.

So R(p, q) is a homogeneous polynomial in the m+ n variables (λ1, . . . µm) of degree
mn which vanishes precisely when λi = µj so (5) must be a scalar multiple of R(p, q),
in fact in general

R(p, q) = amn b
n
m

∏
i,j

(λi − µj).

With this description it is easy to see that

R(p, qr) = R(p, q)R(p, r) (6)

Now replace p(x), q(x) by P (x, y, z), Q(x, y, z). The resultant is now a polynomial in
y and z and we write it as RP,Q(y, z). Since in

P (x, y, z) = a0(y, z) + a1(y, z)x+ . . .+ an(y, z)xn

the coefficient ak(y, z) is a homogeneous polynomial of degree n− k, it follows as we
have just seen that RP,Q(y, z) is a homogeneous polynomial of degree mn.

3.2 Applications

Theorem 8 Any two algebraic curves in P2 intersect in at least one point.

Proof: The coefficients an, bm are constants which vanish if and only if [1, 0, 0] is a
point on both curves. Without loss of generality assume then that an 6= 0, then the
resultant RP,Q(y, z) is a homogeneous polynomial of degree mn so

RP,Q(y, z) = czmn
nm∏
i

(
y

z
− νi) = c′ymn

nm∏
i

(
z

y
− ν ′i)

so there is always a non-zero value (y, z) = (b, c) such that RP,Q(b, c) = 0. Then
P (x, b, c) and Q(x, b, c) have a common zero x = a and [a, b, c] ∈ P2 lies in both
curves. 2

Theorem 9 Two algebraic curves C,D in P2 of degrees n,m respectively intersect
in at most nm points, if they have no common component.
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Proof: Suppose a set S of nm + 1 distinct points lies in C ∩ D. By a projective
transformation assume that [1, 0, 0] is not one of these, nor does it lie on a line joining
any pair of them. Then in particular P (1, 0, 0) 6= 0 6= Q(1, 0, 0) and we can use the
resultant: RP,Q(y, z) is a product of linear factors bz − cy with (b, c) 6= 0. Since
RP,Q(b, c) = 0 there is an a such that P (a, b, c) = 0 = Q(a, b, c). Conversely if
[a, b, c] ∈ S then P (a, b, c) = 0 = Q(a, b, c) and (b, c) 6= 0 since [1, 0, 0] is not in the
intersection, so bz − cy is factor of RP,Q(y, z).

The points [a, b, c] and [a′, b, c] cannot both be in S unless a′ = a for then [1, 0, 0] =
[a′ − a, b − b, c − c] lies on the line joining them, so (b, c) up to a scalar multiple
determines each of the nm+1 points of intersection. But ifRP,Q(y, z) is not identically
zero, it has at most nm linear factors, which is a contradiction.

If RP,Q(y, z) ≡ 0 then from the properties of the resultant, P and Q have a common
factor as polynomials in x over the field of rational functions p(y, z)/q(y, z). But
by Gauss’ lemma, they have a common polynomial factor, which defines a common
component of the curves C and D. 2

Theorem 10 (i) A nonsingular algebraic curve in P2 is irreducible.

(ii) An irreducible curve in P2 has at most a finite number of singular points.

Proof: (i) Let the reducible curve be defined by P (x, y, z)Q(x, y, z) = 0. By
Theorem 8 there is a point [a, b, c] where P (a, b, c) = 0 = Q(a, b, c) and differentiating
the product PQ at (a, b, c) gives zero.

(ii) Without loss of generality assume [1, 0, 0] does not lie on the curve C, so that the
coefficient of xn in P (x, y, z) is non-zero. Then ∂P/∂x is a non-zero homogeneous
polynomial of degree n − 1. C is irreducible and ∂P/∂x has lower degree so there
is no common component, hence by Theorem 9 there are at most n(n− 1) points of
intersection. The singular points lie amongst these. 2

Theorem 11 (Pascal’s mystic hexagram) The pairs of opposite sides of a hexagon
inscribed in an irreducible conic meet in three collinear points.

Proof: Let the successive sides of the hexagon be defined by linear polynomials
L1, . . . L6, and put P = L1L3L5 defining the degree 3 curve C and Q = L2L4L6

defining the curve D, then the six vertices of the hexagon lie in C ∩ D and also on
the conic.

Let [a, b, c] lie on the conic but not on C ∩D then

Q(a, b, c)P (x, y, z)− P (a, b, c)Q(x, y, z)
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defines a degree 3 curve which meets the conic in the six vertices plus the point [a, b, c],
i.e. in 7 = 2 × 3 + 1 points. By Theorem 9, since the conic is irreducible we must
have

Q(a, b, c)P (x, y, z)− P (a, b, c)Q(x, y, z) = L(x, y, z)R(x, y, z)

where R = 0 is the equation of the conic. Hence the degree one factor L defines a
line which passes through the other 9− 6 points of intersection of C ∩D. 2

3.3 Intersection multiplicity

To count properly we need a definition of the multiplicity of the intersection of two
curves. For example if we think of a tangent as the limit of a chord where the two
points of intersection coalesce into one, then we should count that multiplicity as two.
It may also be the case that further points coalesce at the same time, and we need
to be able to count these. Or if we intersect two lines L1, L2 with a third L, then the
two points of intersection with L1 and L2 become one if L passes through the singular
point L1 ∩ L2.

We use the resultant to make the following (technical) definition:

Definition 13 The intersection multiplicity Ip(C,D) of curves C and D at p is de-
fined by the following prescription:

• Ip(C,D) =∞ if p lies on a common component of C and D.
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• Ip(C,D) = 0 if p does not lie on C ∩D

• if p ∈ C∩D, but lies in no common component, remove any common components
to get curves C ′, D′ and choose projective coordinates so that [1, 0, 0] does not lie
on C ′∪D′, nor on any line joining distinct points of C ′∩D′, nor on any tangent
line to C ′ or D′ at a point of C ′ ∩D′. Then define Ip(C,D) at p = [a, b, c] to be
the largest integer k such that (bz − cy)k divides the resultant RP ′,Q′(y, z).

With this definition, we immediately see:

Proposition 12 Suppose C is nonsingular at p, and let Tp be the tangent line at p.
Then Ip(C, Tp) > 1.

Proof: With the hypotheses of the theorem, ∂P/∂x 6= 0 at [a, b, c], so (writing the
partial derivatives as Px etc.) the resultant, obtained by substituting from the linear
equation of the tangent, is a multiple of

P (−Px(p)−1(Py(p)y + Pz(p)z), y, z).

The multiplicity is greater than one if this has a repeated factor, which is where the
derivative with respect to y (or z) vanishes. But using the chain rule, differentiating
with respect to y at p gives

(−P−1
x PyPx + Py)(p) = 0.

2

Proposition 13 If p ∈ C ∩D is a singular point of C, then Ip(C,D) > 1.

Proof: We can choose coordinates such that p = [0, 0, 1], so the partial derivatives
of P vanish here, hence when we write

P (x, y, z) = a0(y, z) + a1(y, z)x+ . . .+ an(y, z)xn

the coefficient a0(y, z) is divisible by y2 and a1(y, z) by y.

Since Q(0, 0, 1) = 0, b0(y, z) is divisible by y and so

b0(y, z) = b01yz
m−1 + y2c0(y, z) b1(y, z) = b10z

m−1 + yc1(y, z).

If b01 = 0 then the first column of the resultant is divisible by y2; if b01 6= 0 then only
y divides the first column. But taking that factor out and subtracting b10/b01 times
the first from the second column gives another factor y. So y2 divides the resultant
and the intersection multiplicity is bigger than one. 2
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The resultant is a fundamentally useful tool but it has the disadvantage that we have
to select x from (x, y, z) to define it, and it is not clear that the definition of Ip(C,D)
is independent of this choice, so it is useful to know that the following properties,
which are clearly independent of choice, actually characterize uniquely Ip(C,D) (see
Kirwan’s book for details).

Theorem 14 The intersection multiplicity satisfies the following properties:

(i) Ip(C,D) = Ip(D,C)

(ii) Ip(C,D) = ∞ if p lies on a common component of C and D and is otherwise a
nonnegative integer.

(iii) Ip(C,D) = 0 if and only if p does not lie in C ∩D.

(iv) Two distinct lines meet at a point with multiplicity one.

(v) If the curve C is the union of components C1, C2 then

Ip(C,D) = Ip(C1, D) + Ip(C2, D).

(vi) If C and D are defined by P and Q and E is defined by PR +Q, then

Ip(C,D) = Ip(C,E).

Proof:

(i) This is clear since RP,Q = ±RQ,P from (5).

(ii) This was part of the definition.

(iii) If p does lie in the intersection then the resultant has at least a linear factor, so
Ip(C,D) ≥ 1.

(iv) If the lines meet at p = [0, 0, 1] they are given by ax+ by = 0, cx+ dy = 0 so the
resultant is (ad− bc)y.

(v) This follows from RP,QR = RP,QRP,R.

(vi) If
R(x, y, z) = ρ0(y, z) + ρ1(y, z)x+ . . .+ ρn−m(y, z)xn−m

then the resultant RP,PR+Q is the determinant of Bij where Bij is equal to the matrix
Aij of RP,Q for i ≤ m and to

Bij +
i−n∑

k=i−m

ρi−n−kAkj

for i > m. But this is obtaned from Aij by row operations so the determinant is
unchanged. 2
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3.4 Cubic curves

Using the notion of multiplicity, we show here how to reduce a nonsingular cubic
curve – defined by a homogeneous polynomial P (x, y, z) of degree 3 – to a standard
form. The vector space of such polynomials is 10-dimensional so there are 9 free
parameters to specify the cubic curve. A projective transformation is determined by
what it does to four points in general position in the projective plane, which gives
8 parameters, so, unlike the conics, we can’t expect to reduce each cubic to a single
equation. There is one remaining degree of freedom, and we shall prove that

Theorem 15 After a projective transformation, the equation for any nonsingular
cubic curve can be put in the form

y2z = x(x− z)(x− λz)

where λ 6= 0, 1.

To do this we consider inflection points, or flexes.

Definition 14 A nonsingular point p ∈ C is called an inflection point if there is a
line L through p with Ip(C,L) ≥ 3. The line is necessarily the tangent to C at p.

Remark: In calculus inflection points on the graph y = f(x) are defined to be points
where the second derivative f ′′(x) vanishes. To see that this is the same we have to
stray from polynomials into holomorphic functions but we shall do this later anyway
when we consider algebraic curves as Riemann surfaces. Suppose that z 6= 0 then the
curve is given by the equation P (x, y, 1) = 0 in affine coordinates. If it is nonsingular
one of ∂P/∂x, ∂P/∂y is non-zero. Suppose it is the latter, then at (x, y) = (a, b) on
the curve, the implicit function theorem tells us that there are neighbourhoods V and
W of a and b in C and a holomorphic function g : V → W such that for x ∈ V and
y ∈ W P (x, y, 1) = 0 if and only if y = g(x).

The tangent line at (a, b) is (x, y) = (a, b) + t(1, g′(a)) so (a, b) is an inflection point
if and only if t3 divides P (a + t, b+ tg′(a), 1). Now P (x, g(x), 1) ≡ 0, and g(a + t) =
b+ tg′(a) + t2g′′(a)/2 + t3h(t). Moreover

P (x, y, 1) =
∑
k,`

ak`x
ky`

so ∑
k,`

ak`(a+ t)k(b+ tg′(a) + t2g′′(a)/2 + t3h(t))` ≡ 0.
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But then, expanding the power of `,∑
k,`

ak`(a+ t)k(b+ tg′(a))` + t2g′′(a)/2
∑
k,`

ak`(a+ t)k`(b+ tg′(a))`−1 + t3k(t) ≡ 0.

Since, near (x, y) = (a, b),

0 6= ∂P

∂y
=
∑
k,`

ak`x
k`y`−1

it follows that t3 divides the first term, which is P (a + t, b + tg′(a), 1), only where
g′′(a) = 0.

In what follows it is convenient to revert to the notation of (x0, x1, x2) for (x, y, z)
and to set Pi to be the first derivatives and Pij to be the matrix of second partial
derivatives:

Pij =
∂P

∂xi∂xj
.

Proposition 16 A nonsingular point p ∈ C is an inflection point if and only if
detPij = 0.

Proof: To find the multiplicity of p with respect to a line we have to take the
resultant of P (x, y, z) and ax+by+cz. But this is just substituting x = −(by+cz)/a
into P . It is more convenient to retain the symmetry and consider the line as the set
of points

[a0 + tα0, a1 + tα1, a2 + tα2]

as t varies. Then Ip(C,L) ≥ 3 if and only if t3 divides

P (a0 + tα0, a1 + tα1, a2 + tα2).

Expanding this, we have

P (a+ tα) = P (a) + t
∑
i

Pi(a)αi +
t2

2

∑
i,j

Pij(a)αiαj + t3R (7)

and t3 divides this if and only if∑
i

Pi(a)αi = 0 =
∑
i,j

Pij(a)αiαj.
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The first equation says that the line is a tangent.

We now use homogeneity – the Pi are homogeneous of degree n − 1 – so Euler’s
relation gives

(n− 1)Pi(a) =
∑
j

Pij(a)aj.

This always gives∑
i,j

Pij(a)aiaj = (n− 1)
∑
i

Pi(a)ai = n(n− 1)P (a) = 0 (8)

and in our case also ∑
i,j

Pij(a)aiαj = (n− 1)
∑
i

Pi(a)αi = 0

from the first equation. Together with the second equation we see that the quadratic
form on the vector space spanned by a and α (the subspace of C3 defining the line L)
vanishes completely. This means that the matrix of the quadratic form with respect
to a basis a, α, β is of the form  0 0 ∗

0 0 ∗
∗ ∗ ∗


and so detPij(a) = 0.

Conversely take a basis of a,α, β where a and α define the tangent at p. From (8)
the matrix is of the form  0 0 ∗

0 ∗ ∗
∗ ∗ ∗

 (9)

If
∑

ij Pijaiβj = 0 then
∑

i Piβi = 0 by homogeneity, but then [β0, β1, β2] lies on the
tangent so a, α, β do not form a basis. Hence the determinant detPij vanishes if and
only if the central term ∑

i,j

Pij(a)αiαj = 0.

2

Remark: The inflection points are the points of C ∩H where H is the curve (called
the Hessian) with equation detPij = 0. From Proposition 8 they exist. In fact they
are finite in number if the degree of P is bigger than one. To see this, suppose there
are infinitely many. Then the Hessian and C have a common component. Since C
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is nonsingular it must be a component of H and so every point is a flex. But then,
using the description of the curve as a graph y = g(x), we see that g′′(x) ≡ 0 and
g(x) = α + βx. But then

P (x, α + βx, 1) ≡ 0

and y − α − βx is a factor of P (x, y, 1) which is a contradiction unless P (x, y, 1) is
linear.

Now start the proof of Theorem 15.

Proof: The partial derivatives Pij are of degree 3− 2 = 1, so detPij = 0 is a cubic
curve H.

Take [0, 1, 0] to be an inflection point and z = 0 to be the tangent. Then from (7)
P (t, 1, 0) = t3c which means that

P (x, y, z) = kx3 + a1(x, y)z + a2(x, y)z2 + a3z
3.

Since z = 0 is the tangent at [0, 1, 0], ∂P/∂z 6= 0 so the coefficient of y2z is nonvan-
ishing. Moreoever clearly the coefficient of y is divisible by z, so the equation can be
put in the form

y2z + yz(αx+ βz) + b1(x, z) = 0.

Now “complete the square” to write this as (y − (αx + βz)/2)2z − b2(x, z) = 0 and
apply the projective transformation [x, y, z] 7→ [x,−αx/2 + y − βz/2, z] to transform
it to y2z = b3(x, z). Since C is nonsingular it is irreducible, so z does not divide
b3(x, z) and therefore the coefficient of x3 is non-zero so we can write

y2z = A(x− az)(x− bz)(x− cz)

and then (x, y, z) 7→ ((x− az)/(b− a), y, z) and rescaling y takes it to the form

y2z = x(x− z)(x− λz).

If λ = 0 then [0, 0, 1] is a singularity and if λ = 1 then [1, 0, 1] is. 2

3.5 Bézout’s theorem

Now that we have a definition of intersection multiplicity, we can formulate the basic
theorem about the intersection of curves:
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Theorem 17 (Bézout’s theorem) If C and D are two algebraic curves in P2 of de-
grees n,m with no common component, then∑

p∈C∩D

Ip(C,D) = mn.

Proof: Using the coordinates in the definition of multiplicity, we express the resul-
tant as a product of linear factors:

RP,Q(y, z) =
∏
i

(ciz − biy)ei

where e1 + . . .+ ek = mn.

By the arguments in Theorems 8 and 9 each such factor gives a point pi ∈ C ∩ D
with Ipi(C,D) = ei. 2

When is mn the actual number of intersections? Clearly only when Ipi(C,D) = 1.
We need the following:

Proposition 18 The intersection multiplicity Ip(C,D) is equal to one if and only
if p is a nonsingular point of C and D and the tangent lines to C and D at p are
distinct.

Proof: From Proposition 13, if Ip(C,D) = 1, p must be a nonsingular point of C
and D. As usual, choose coordinates such that p = [0, 0, 1]. We need to show that the
tangent lines coincide if and only if y2 divides the resultant RP,Q(y, z), or equivalently
that the derivative of RP,Q(y, 1) vanishes at y = 0.

Now by assumption [1, 0, 0] does not lie on the tangent line to p for either curve so
∂P/∂x(0, 0, 1) 6= 0 and similarly for Q. The implicit function theorem then tells
us that in a suitable small neighbourhood, the solution x of P (x, y, 1) = 0 is a
holomorphic function of y. In other words, near [0, 0, 1], the roots λ1(y), µ1(y) of P
and Q which coincide when y = 0 are holomorphic functions of y.

Thus

P (x, y, 1) = (x− λ1(y))`(x, y) Q(x, y, 1) = (x− µ1(y))m(x, y)

for polynomials `,m in x with coefficients which are holomorphic functions of y.
Then the resultant RP,Q(y, 1) = (λ1(y) − µ1(y))S(y) where S(y) is holomorphic.
Differentiating at y = 0,

∂RP,Q(y, 1)

∂y
|y=0 = (λ′1(0)− µ′1(0))S(0). (10)
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We shall show next that S(0) 6= 0.

Since ∂P/∂x(0, 0, 1) 6= 0, x = 0 is not a repeated root of P (x, 0, 1) so for i 6= 1,
λi(0) 6= 0 and similarly for Q. If λi(0) = µj(0) for i, j > 1 then [0, 0, 1] and [λi(0), 0, 1]
are distinct points in C∩D and [1, 0, 0] lies on the line joining them which contradicts
our assumptions. Now S(y) is a product of resultants and we see here that there is
no other coincidence of roots than λ1(0) = µ1(0) at y = 0. Thus S(0) 6= 0.

It follows that the derivative in equation (10) vanishes if and only if λ′1(0)−µ′1(0) = 0.
Now since P (λ1(y), y, 1) ≡ 0, differentiating with respect to y gives

∂P

∂x
λ′1(y) +

∂P

∂y
= 0

and at [0, 0, 1] by Euler’s identity ∂P/∂z = nP = 0, so the tangent line to C is
x− λ′1(0)y = 0 and for D x− µ′1(0)y = 0. Hence the tangents coincide if and only if
λ′1(0)− µ′1(0) = 0, which proves the theorem.

2
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4 The genus of a curve

4.1 Riemann surfaces

Nonsingular projective algebraic curves provide us with a rich source of examples of
Riemann surfaces, objects dealt with in the Geometry of Surfaces course. This part
of the notes repeats some of the facts in the notes for the earlier course, and applies
them to algebraic curves. Let us recall the notion of an abstract surface: each point
has a neighbourhood U and a homeomorphism ϕU from U to an open set V in R2.
If two such neighbourhoods U,U ′ intersect, then

ϕU ′ϕ−1
U : ϕU(U ∩ U ′)→ ϕU ′(U ∩ U ′)

is a homeomorphism from one open set of R2 to another.

V’

U
U’

V

If we identify R2 with the complex numbers C then we can define:

Definition 15 A Riemann surface is a surface with a class of homeomorphisms ϕU
such that each map ϕU ′ϕ−1

U is a holomorphic homeomorphism.

We call each function ϕU a holomorphic coordinate. If we compose with an invertible
holomorphic map f : ϕU(U)→ C then f ◦ϕU is another holomorphic coordinate. We
shall be studying properties of Riemann surfaces which do not depend on a particular
choice of coordinate.

Examples:

1. Let X be the complex projective line X = P1. Let U = {[z0, z1] ∈ P1 : z0 6= 0}
with ϕU(z) = z1/z0 ∈ C. Now take U ′ = {[z0, z1] ∈ P1 : z1 6= 0} and define
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ϕU(z) = z0/z1 ∈ C. Then
ϕU(U ∩ U ′) = C\{0}

and
ϕUϕ

−1
U ′ (z) = z−1

which is holomorphic.

2. Let ω1, ω2 ∈ C be two complex numbers which are linearly independent over the
reals, and define an equivalence relation on C by z1 ∼ z2 if there are integers m,n such
that z1− z2 = mω1 + nω2. Let X be the set of equivalence classes (with the quotient
topology). A small enough disc V around z ∈ C has at most one representative in
each equivalence class, so this gives a local homeomorphism to its projection U in X.
If U and U ′ intersect, then the two coordinates are related by a map

z 7→ z +mω1 + nω2

which is holomorphic.

This surface is topologically described by noting that every z is equivalent to one
inside the closed parallelogram whose vertices are 0, ω1, ω2, ω1 + ω2, but that points
on the boundary are identified:

We thus get a torus this way. Another way of describing the points of the torus is as
the quotient group C/Γ where Γ is the subgroup consisting of complex numbers of
the form mω1 + nω2.

3. Let C be a nonsingular projective algebraic curve defined by P (x, y, z) = 0. Every
point lies in an affine open set of P2 which is homeomorphic to C2. On z 6= 0 its
equation is P (x, y, 1) = 0 and if C is nonsingular one of ∂P/∂x, ∂P/∂y is non-zero.
Suppose it is the latter, then at (x, y) = (a, b) on the curve, the implicit function
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theorem tells us that there are neighbourhoods V and W of a and b in C and a
holomorphic function g : V → W such that for x ∈ V and y ∈ W P (x, y, 1) = 0 if
and only if y = g(x). Hence for (x, y) ∈ C ∩ (V ×W ) the function x has an inverse
x 7→ (x, g(x)), and this is a local coordinate for C.

If ∂P/∂x is non-vanishing we can do the same interchanging the roles of x and y, and
get x = h(y). Where both are non-vanishing

y = g(h(y))

and we have an invertible holomorphic function relating the two local coordinates.

On the affine set y 6= 0, the equation of the curve is P (x̃, 1, z̃) where, when z 6= 0,
x̃ = x/y, z̃ = 1/y and it is easy to see that the holomorphic coordinates on the
intersection of these two open sets is holomorphic and invertible.

Definition 16 A holomorphic map between Riemann surfaces X and Y is a contin-
uous map f : X → Y such that for each holomorphic coordinate ϕU on U containing
x on X and ψW defined in a neighbourhood of f(x) on Y , the composition

ψW ◦ f ◦ ϕ−1
U

is holomorphic.

Example: Consider a projective algebraic curve C defined by P (x, y, z). If [0, 0, 1] 6=
C we can define a map

f : C → P1

by
f([x, y, z]) = [x, y]. (11)

This is well defined because x and y are not simultaneously zero, and will play an
important role in what follows.

4.2 Maps to P1

Maps from an algebraic curve to the projective line have another interpretation:

Definition 17 A meromorphic function f on a Riemann surface X is a map to
C ∪ {∞} such that for each coordinate neighbourhood f ◦ ϕU−1 is a meromorphic
function on ϕU(U) ⊆ C.
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Examples: 1. A rational function

f(z) =
p(z)

q(z)

where p and q are polynomials is a meromorphic function on P1.

2. Look at the map (11) where f = y/x. In any of our local coordinates this is the
ratio of two holomorphic functions and so is meromorphic. We could also take any
polynomial in f , or ratios of these.

This is an analytic view of meromorphic functions: we can add, multiply them to-
gether and also divide by non-zero functions. These are all meromorphic and form a
field. On the other hand, any individual meromorphic function on X can be geomet-
rically represented as a map to P1: if we remove f−1(∞), then f is just a holomorphic
function F with values in C, so on this part of X, we define the map

x 7→ [F (x), 1] ∈ P1.

If f(x) =∞, and U is a small enough coordinate neighbourhood of x, then (f ◦ϕ−1
U )−1

is a holomorphic function F̃ , and the map is defined by x 7→ [1, F̃ (x)] ∈ P1.

Before proceeding, recall some basic facts about ordinary holomorphic functions (see,
for example, Introduction to Complex Analysis, Second Edition, H. A. Priestley, OUP,
Price: £23.00 (Paperback) ):

• A holomorphic function has a convergent power series expansion in a neigh-
bourhood of each point at which it is defined:

f(z) = a0 + a1(z − c) + a2(z − c)2 + . . .

• If f vanishes at c then

f(z) = (z − c)m(a0 + a1(z − c) + . . .)

where a0 6= 0. In particular zeros are isolated.

• If f is non-constant it maps open sets to open sets.

• If f ′(c) 6= 0 then f has a local holomorphic inverse g (this is very useful for
changing a local coordinate to a more convenient one.)
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• |f | cannot attain a maximum at an interior point of a disc (“maximum modulus
principle”) unless f is constant.

• f : C → C preserves angles between differentiable curves, both in magnitude
and sense.

Remark: One consequence of the maximum modulus principle is that a holomorphic
map f : X → C from a compact connected Riemann surface X must be a constant:
by compactness |f | has a maximum at a, so in some coordinate neighbourhood of a
is represented by a holomorphic function F with an interior maximum modulus. It
follows that f(x) = c in a neighbourhood. Now consider the set of all x such that
f(x) = c in a neighbourhood of x. This is open and non-empty, but is also closed
because the zeros of f(x)− c are isolated.

Now return to the situation of a holomorphic map f : X → P1. For each point, this
is described by a locally defined holomorphic function F = f ◦ ϕ−1

U .

If the inverse image of a ∈ P1 is infinite, then it has a limit point x by compactness
of X. In a holomorphic coordinate z around x with z(x) = 0, f is defined by a
holomorphic function F with a sequence of points zn → 0 for which F (zn) − a = 0.
But the zeros of a holomorphic function are isolated, so we deduce that f−1(a) is a
finite set.

Example: Take the map (11). The inverse image of a = [a0, a1] is the set of points
[a0t, a1t, z] such that P (a0t, a1t, z) = 0 which is a homogeneous polynomial in t and
z of degree n and splits into ≤ n factors.

By a similar argument the points at which the derivative F ′ vanishes are finite in num-
ber (check using the chain rule that this condition is independent of the holomorphic
coordinate).

Definition 18 Let f : X → Y be a holomorphic map of Riemann surfaces. The point
x ∈ X is a ramification point if in local coordinates f is represented by a holomorphic
function F such that F ′ = 0 at x.

If f is any holomorphic function on C such that f ′(0) = 0, we have

f(z) = zn(a0 + a1z + . . .)
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with a0 6= 0. We can expand

(a0 + a1z + . . .)1/n = a
1/n
0 (1 + b1z + . . .)

in a power series and define

w = a
1/n
0 z(1 + b1z + . . .).

Since w′(0) 6= 0 we can think of w as a new coordinate and then the map becomes
simply

w 7→ wn.

So, thinking geometrically of P1 as a Riemann surface where we are allowed to change
coordinates, a ramification point can be locally put in the form z 7→ zn. The integer
n is its ramification index. If F ′ is not zero at z = 0 then clearly the index is 1.

Proposition 19 In the map (11), the ramification points are those points p ∈ C at
which the tangent line Tp at p passes through [0, 0, 1]. The ramification index is the
intersection multiplicity Ip(C, Tp).

Proof: Assume that ∂P/∂y 6= 0 and use x as a local coordinate to represent the
curve as y = g(x). The map is then g(x)/x if x 6= 0 and x/g(x) if x = 0. Assume the
first case, then F ′ = 0 if and only if xg′(x)− g(x) = 0. But P (x, g(x), 1) = 0 so

∂P

∂x
+ g′(x)

∂P

∂y
= 0.

At the ramification point y = g(x) = xg′(x) and g′(x) 6= 0 so

x
∂P

∂x
+ y

∂P

∂y
= 0

but from Euler’s identity this means that ∂P/∂z = 0. Hence the tangent line passes
through [0, 0, 1].

In coordinates suppose the ramification point is x = c and g(c)/c = a then the tangent
line is y = ax. If the ramification index is n, then locally

g(x) = ax+ (x− c)nh(x)

where h(c) 6= 0. Then since P (x, g(x), 1) ≡ 0 putting x− c = s,

P (c+ s, ac+ as+ snk(s), 1) ≡ 0.

As in Proposition 16 this means that P (c + s, ac + as, 1) is divisible by sn and no
higher power, so the intersection multiplicity with the tangent y = ax is n. 2
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Remark: The map in (11) has a more geometric character: for each point p ∈ C
consider the line joining it to [0, 0, 1]. This defines a map to the space of lines through
[0, 0, 1], but this is a projective line, though not a line in the P2 in which C lies.
Instead, if we consider the dual space V ∗ of linear maps f : V → C, those which
annihilate (0, 0, 1) form a two-dimensional subspace, hence a line in P (V ∗), the space
of all lines in P (V ) through [0, 0, 1].

[0,0,1]

ramification point

C

4.3 The degree-genus formula

From the Geometry of Surfaces course we have:

Proposition 20 A Riemann surface is orientable.

and hence a nonsingular projective algebraic curve is a compact orientable surface.

We also have:

Proposition 21 A nonsingular projective algebraic curve is connected.

Proof: First consider the special curve xn+yn−zn = 0 (sometimes called a Fermat
curve for obvious reasons). The intersection multiplicity of y − z = 0 with the curve
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is clearly n, so [0, 1, 1] is a ramification point of the map f = y/z with multiplicity
n. This means that f−1(U) is connected for a small neighbourhood U of 1 ∈ C. If
there is another connected component C0, then 1 6= f(C0) but then f maps C0 to
C ∼= P1 \ {1} and so f is a constant c. But then the line y− cz = 0 divides P but we
have assumed that C is nonsingular. So this curve is definitely connected.

Intuitively, it is clear that if we change the coefficients slightly, the number of con-
nected components doesn’t change. Below we will give a better justification of this
fact, but let’s assume that for the moment. The condition for nonsingularity is the
vanishing of a polynomial in the coefficients so if we take curves define by P and Q,
then tP (x, y, z) + (1− t)Q(x, y, z) for t ∈ C will be nonsingular unless a polynomial
in t vanishes at a finite number of points or is identically zero. If the latter we can
replace this path between P and Q by a series of such complex “intervals” for which
the singular curves are given by the vanishing of a polynomial in t. Either way, we
can avoid a finite number of points in C by a real path joining P to Q, and so have a
path of curves all of which are nonsingular. If we start with P (x, y, z) = xn+yn− zn,
then since P = 0 is connected, so is the curve defined by Q. 2

Remark: We give here a bit more detail about one way of seeing that if we vary the
coefficients continuously through nonsingular curves, then in fact any two such curves
are homeomorphic, much stronger than just having the same number of connected
components. It involves the first fundamental form for a three-dimensional object –
a differentiable 3-manifold – but it is just a generalization of what you have seen in
the Geometry of Surfaces course.

So suppose P (x, y, z, t) is a homogeneous polynomial whose coefficients depend dif-
ferentiably on the real parameter t, and so that for each t the curve P (x, y, z, t) = 0 is
nonsingular. Inside P2 ×R we look at the set P (x, y, z, t) = 0. In affine coordinates,
if Px(x, y, 1, t) 6= 0 then by the implicit function theorem with y = u+ iv, we have a
locally defined function x(u, v, t) such that

P (x(u, v, t), u+ iv, 1, t) ≡ 0.

Repeating for the other affine open sets means that the set P (x, y, z, t) = 0 has the
structure of a 3-dimensional differentiable manifold M , with local coordinates (u, v, t).
Moreover, t is a well-defined smooth function on M and since t is always part of a
coordinate system, its derivative never vanishes. The level set t = c is the algebraic
curve (or real surface in this context), P (x, y, z, c) = 0.

We now want to introduce a Riemannian metric, or first fundamental form on M .
This means measuring the length of smooth curves on M ⊂ P2 ×R. there are many
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ways of doing this, the easiest is to embed P2 ×R in some Euclidean space RN and
just use the usual length of a curve there. Since a point in P2 is a one-dimensional
subspace of C3 we can describe it by a 3× 3 matrix which acts as 1 in this direction
and −1 on the orthogonal complement with respect to the Hermitian inner product
on C3. The space of all 3 × 3 complex matrices has real dimension 18, so this gives
an embedding P2 ×R ⊂ R19.

Using this inner product on tangent vectors to M , we take the one-dimensional or-
thogonal complement to the tangent space of the surface t = c. Since t is a constant
on t = c and its derivative is non-zero, then the derivative of t in this normal direction
is non-zero, so we can find a family X of tangent vectors to M , normal to t = c, such
that the derivative of t in this direction is 1. Vary c and we get a vector field on M
always pointing normal to the level sets of t and with the property that the derivative
of t in this direction is 1.

M

t=cX

We now integrate this vector field for small values of t. Analytically this means solving
a differential equation. If we think of X as a wind velocity, we want to see where the
surface t = c gets blown to after time s. In local coordinates this is an equation of
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the form
du

ds
= a(u, v, t)

dv

ds
= b(u, v, t)

dt

ds
= 1

where the last relation holds since the derivative of t in the direction X is one. Since
t = c is compact, the existence theorems for differential equations say that for s small
we have a solution and this means that (u(0), v(0), t(0)) 7→ (u(s), v(s), t(s)) gives a
diffeomorphism from t = c to t(s) = c+ s. By connectedness this extends for t lying
in a whole interval.

A nonsingular algebraic curve is thus a compact connected oriented surface which
means that C is determined up to homeomorphism by its Euler characteristic, which
is of the form χ(C) = 2− 2g.

Definition 19 The genus of a nonsingular algebraic curve C is the integer g ≥ 0
such that χ(C) = 2− 2g.

Example: The projective line P1 = C ∪ {∞} is homeomorphic to a sphere by
stereographic projection. It has genus zero.

Using the map to P1 considered above, we shall calculate g in terms of the degree n
of the polynomial P (x, y, z) which defines C, by using the Riemann-Hurwitz formula.

Recall that for a map f : C → P1 there are two types of points: if F ′(x) 6= 0, then
the inverse function theorem tells us that f maps a neighbourhood Ux of x ∈ C
homeomorphically to a neighbourhood Vx of f(x) ∈ P1. If F ′(x) = 0 then the map
looks like z 7→ zn which is not a homeomorphism – the inverse image of 0 is a single
point but of any other nearby point it is n points. Define V to be the intersection of
the Vx as x runs over the finite set of points such that f(x) = a, then f−1V consists
of a finite number of disjoint open sets, each one of which is mapped to V by a map
of one of the above forms.

V
f

Removing the finite number of images under f of ramification points (this is called
the branch locus of the map) we get a sphere minus a finite number of points. This
is connected. The number of points in the inverse image of a point in this punctured
sphere is integer-valued and continuous, hence constant. It is called the degree d of
the map f .
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Example: For the map (11) the inverse image of a = [a0, a1] is the set of points
[a0t, a1t, z] such that P (a0t, a1t, z) = 0. This inverse image contains no ramification
points if this has no repeated factors, so the degree of the map is the degree of the
polynomial P (x, y, z).

Now recall from the Geometry of Surfaces course:

Theorem 22 (Riemann-Hurwitz) Let f : X → P1 be a holomorphic map of degree
d on a closed connected Riemann surface X, and suppose it has ramification points
x1, . . . , xn of multiplicity mk. Then

χ(X) = 2d−
n∑
k=1

(mk − 1)

Proof: The idea is to take a triangulation of the sphere P1 such that the image of
the ramification points are vertices (see Kirwan’s book for more details). Now take a
finite subcovering of P1 by open sets of the form V above where the map f is either
a homeomorphism or of the form z 7→ zm. Subdivide the triangulation into smaller
triangles such that each one is contained in one of the sets V . Then the inverse images
of the vertices and edges of P1 form the vertices and edges of a triangulation of X.

If the triangulation of P1 has V vertices, E edges and F faces, then clearly the
triangulation of X has dE edges and dF faces. It has fewer vertices, though — in a
neighbourhood where f is of the form w 7→ wm the origin gives a single vertex instead
of m of them. For each ramification point of order mk we therefore have one vertex
instead of mk. The count of vertices is therefore

dV −
n∑
k=1

(mk − 1).

Thus

χ(X) = d(V − E + F )−
n∑
k=1

(mk − 1) = 2d−
n∑
k=1

(mk − 1)

using χ(P1) = 2. 2

Clearly the argument works just the same for a holomorphic map f : X → Y and
then

χ(X) = dχ(Y )−
n∑
k=1

(mk − 1).

We can now calculate the genus:
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Theorem 23 Let C be a non-singular projective algebraic curve of degree n. Then
the genus of C is

g =
(n− 1)(n− 2)

2
.

Proof: Take our familiar map f = y/x. As we saw above, the ramification points
occur where the tangents pass through [0, 0, 1] and are therefore given by the equation
∂P/∂z = 0. The multiplicity is bigger than 2 only if Ip(C, Tp) > 2, i.e. if p is
an inflection point, but there are only finitely many of these, so by a projective
transformation we can assume that [0, 0, 1] does not lie on the tangent to any one of
them. This means that each mk in the Riemann-Hurwitz formula is 2, and it remains
to calculate the number of ramification points.

This is the number of points of intersection of P = 0, the curve C of degree n, and
∂P/∂z = 0, a curve D which is of degree n−1. Since C is nonsingular it is irreducible,
and so C and D can have no common component. We will use Bézout’s theorem, so
we need to check that [a] = [a0, a1, a2] ∈ C ∩D is a nonsingular point of D and that
the tangent lines are distinct. Now (Pzx, Pzy, Pzz) is not identically zero at [a0, a1, a2]
because this would make the Hessian of C vanish and we know that [a0, a1, a2] is not
an inflection point. This shows that D is nonsingular here.

Suppose that the tangents of C and D coincide then (Pzx, Pzy, Pzz) is a multiple of
(Px, Py, Pz). As in our discussion of inflection points we use the symmetric bilinear
form B defined by the matrix of partial derivatives Pij. Then B(a, a) = 0 = B(a, α)
where the tangent line joins [a] and [α]. Put v = (0, 0, 1).

By the Euler identity

a0Pzx + a1Pzy + a2Pzz = (n− 1)Pz = 0

since Pz(a) = 0. This gives B(a, v) = 0. Moreover since Pzz(a) = λPz(a) = 0, we
have B(v, v) = 0.

Since [a] is not an inflection point, detB 6= 0 so from

0 = B(a, a) = B(a, α) = B(a, v)

we deduce v = µa+ να. But then

0 = B(v, v) = ν2B(α, α)

and, as in Proposition 16, this gives detB = 0 unless ν = 0. But then [a] = [0, 0, 1]
which we have specifically excluded. We conclude that the tangents are distinct and
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it follows that the conditions for Bézout’s theorem hold, so the number of ramification
points is exactly n(n− 1).

From the Riemann-Hurwitz formula we obtain

2− 2g = 2n− n(n− 1)

and so

g =
1

2
(n− 1)(n− 2).

2

Remark: When n = 1, g = 0 and we have already seen that the projective line is
homeomorphic to the sphere. The genus also vanishes when n = 2, a conic, but from
Theorem 7, we saw that this is homeomorphic to the sphere too.

4.4 The torus and the cubic

When n = 3 we get g = 1 which means that a nonsingular cubic surface is homeomor-
phic to a torus. Here is a more concrete realization of that fact. We take the Riemann
surface which is the second example in Examples 4.1. This is the set of equivalence
classes of z ∈ C where z1 ∼ z2 if there are integers m,n such that z1−z2 = mω1 +nω2

and is clearly a torus.

As in the Geometry of Surfaces course, define

℘(z) =
1

z2
+
∑
ω 6=0

(
1

(z − ω)2
− 1

ω2

)
where the sum is over all non-zero ω = mω1 + nω2, with m,n integers. Since for
2|z| < |ω| ∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ ≤ 10
|z|
|ω|3

this converges uniformly on compact sets so long as∑
ω 6=0

1

|ω|3
<∞.

But mω1 + nω2 is never zero if m,n are real so we have an estimate

|mω1 + nω2| ≥ k
√
m2 + n2
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so by the integral test we have convergence. Because the sum is essentially over all
equivalence classes, we have

℘(z +mω1 + nω2) = ℘(z)

so that this is a meromorphic function on the surface X. It is called the Weierstrass
℘-function.

We now want to know geometrically what this map from a torus to the projective
line looks like.

Firstly, ℘ has degree 2 since ℘(z) =∞ only at z = 0 and there it has multiplicity 2.
The multiplicity of any ramification point cannot be bigger than this because then it
will look like z 7→ zn and a non-zero point will have at least n inverse images. Thus
the only possible value at the ramification points in this example is mk = 2. The
Riemann-Hurwitz formula gives:

0 = 4− n
so there must be exactly 4 ramification points. In fact we can see them directly,
because ℘(z) is an even function, so the derivative vanishes if −z = z. Of course
at z = 0, ℘(z) = ∞ so we should use the other coordinate on S: 1/℘ has a zero of
multiplicity 2 at z = 0. To find the other points recall that ℘ is doubly periodic so
℘′ vanishes where

z = −z +mω1 + nω2

for some integers m,n, and these are the four points

0, ω1/2, ω2/2, (ω1 + ω2)/2 :

The geometric Riemann-Hurwitz formula has helped us here in the analysis by show-
ing us that the only zeros of ℘′ are the obvious ones. Suppose, by a projective
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transformation of P1, that their images are ∞ and the three finite points e1, e2, e3

where
e1 = ℘(ω1/2), e2 = ℘(ω2/2), e3 = ℘((ω1 + ω2)/2).

The derivative ℘′(z) vanishes at three points, each with multiplicity 1. At each of
these points ℘ has the local form

℘(z) = e1 + (z − ω1/2)2(a0 + . . .)

and so
1

℘′(z)2
(℘(z)− e1)(℘(z)− e2)(℘(z)− e3)

is a well-defined holomorphic function on X away from z = 0. But ℘(z) ∼ z−2 near
z = 0, and so ℘′(z) ∼ −2z−3 and hence this function is finite at z = 0 with value 1/4.
By the maximum argument, since X is compact, the function is a constant, namely
1/4, and

℘′(z)2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3). (12)

This is the equation of a cubic curve C:

y2 = 4(x− e1)(x− e2)(x− e3).

Now ℘ : X → P1 is surjective (otherwise the degree would be zero!), so ℘(z) takes
every value in P1. Moreover, since ℘(−z) = ℘(z), ℘′(−z) = −℘′(z) so for each value
of x there is a z for both values of y.

Therefore z 7→ [℘(z), ℘′(z), 1] defines a homeomorphism from X to C.
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5 The Riemann-Roch theorem

5.1 Divisors

Let f be a meromorphic function on an open set U ⊆ C. If f(a) = 0 then near a

f(z) = (z − a)mg(z)

where m > 0 is the multiplicity of the zero and g(z) is holomorphic with g(a) 6= 0.
So if f̃ has a zero at a with the same multiplicity then

f̃

f
=
g̃(z)

g(z)

which is holomorphic. The multiplicity is independent of the coordinate z.

Similarly near a pole b
f(z) = (z − b)−nh(z)

where h(b) 6= 0.

Now consider a meromorphic function f on an algebraic curve C. Suppose its zeros are
p1, . . . , pk with multiplicities m1, . . . ,mk and its poles are q1, . . . , q` with multiplicities
n1, . . . , n`. If f̃ is another meromorphic function with exactly the same zeros and poles
and multiplicities, then f̃/f is a (non-vanishing) holomorphic function and by the
maximum principle this is a constant. So, up to a constant multiple, f is determined
by the zeros, poles and multiplicities. We write this is

k∑
i=1

mkpi −
∑̀
i=1

niqi.

Definition 20 A divisor D on a curve C is a formal sum

D =
∑
p∈C

npp

where for each point p ∈ C, np is an integer and np = 0 for all but finitely many
points.

The degree of D is defined by

degD =
∑
p∈C

np.
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For a meromorphic function we write its divisor as (f). Not all divisors come from
meromorphic functions. In the first place deg(f) = 0. This comes from the geometric
interpretation of f as a map f : C → P1. The number of zeros (counted with
multiplicities) is the corresponding count of the number of points in f−1(0) which is
the degree of f considered as a map to P1. But this is the same number for f−1(∞)
or any other point.

More importantly, even if the degree of D is zero, there may not be a meromorphic
function with the same divisor. On P1 it is true, because given any points a, b ∈ C,
(z − a)/(z − b) is a meromorphic function with a simple zero at a and a simple pole
at b, so for any two points p, q ∈ P1, p− q and hence any sum∑

i

(pi − qi)

is the divisor of a meromorphic function.

However, suppose that on a curve C (or more generally a Riemann surface) we have
a meromorphic function f with a simple zero only at p and a simple pole only at
q. Then in the geometrical viewpoint f : C → P1, f−1{0} consists of one point so
the degree of the map is 1 and furthermore there can be no ramification points since
in the neighbourhood of z 7→ zn a nonzero value has n inverse images. From the
Riemann-Hurwitz formula 2− 2g = 2 and so this feature can only occur when g = 0.

A divisor is said to be effective, or positive, if all the np are nonnegative. We can add
and subtract divisors in the obvious way and so we write

D ≥ D′

if D − D′ is effective. So effective means D ≥ 0. Clearly if D ≥ D′, then degD ≥
degD′.

Definition 21 A divisor D is said to be a principal divisor if D = (f) for some
meromorphic function f .

Divisors D,D′ are said to be linearly equivalent if D −D′ is a principal divisor.

We write D ∼ D′ for two linearly equivalent divisors. Since deg(f) = 0 in the divisor
sense, the degree of two linearly equivalent divisors is the same.

We shall be interested in the effective divisors in a given equivalence class. What
does this mean? Consider an effective divisor

k∑
i=1

mipi
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where mi > 0. An effective divisor
∑

i niqi is equivalent to this if there is a meromor-
phic function f such that

(f) =
∑
i

mipi −
∑
i

niqi.

In other words D is defined by a meromorphic function whose zeros are precisely the
pi with multiplicity mi. For any divisor we make the following definition:

Definition 22 Let D be a divisor on the curve C. Denote by L(D) the set of mero-
morphic functions f such that (f) +D ≥ 0 together with the zero function.

Proposition 24 (i) L(D) is a finite-dimensional vector space.

(ii) If degD < 0, then L(D) = 0.

(iii) If D ∼ D′ then dimL(D) = dimL(D′).

(iv) The projective space P (L(D)) is in one-to-one correspondence with the effective
divisors equivalent to D.

Proof: (i) Write D as ∑
i

mipi −
∑
i

niqi

where the mi, ni are positive, then we are looking at meromorphic functions f which
have a pole of order ≤ mi at pi and no more poles, and have zeros of order ≥ ni at qi.
In other words, functions f whose zeros cancel the qi and whose poles are cancelled
by the pi. This set is clearly closed under addition and scalar multiplication, and so
forms a vector space L(D).

At each pole pi, in a local coordinate z, we can write

f(z) =
ami

(z − zi)mi
+ . . .+

a1

(z − zi)
+ h(z)

where h is holomorphic and f 7→ (ami
, . . . , a1) is a linear map from L(D) to Cmi .

The intersection of the kernels of this finite number of maps consists of holomorphic
functions which must be constant and hence at most a one-dimensional space, so the
vector space L(D) must be finite-dimensional.

(ii) If (f) +D ≥ 0 then 0 ≤ deg(f) + degD = degD.

(iii) If D = D′ + (g), then f 7→ fg defines an isomorphism from L(D) to L(D′).
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(iv) If f ∈ L(D) then by definition (f) +D is effective and linearly equivalent to D.
2

The dimension `(D) = dimL(D) is a very subtle thing in general and there is no
simple formula in terms of the genus g and degD. The Riemann-Roch theorem
however relates a particular pair of these numbers.

5.2 Canonical divisors

The derivative of a meromorphic function is not a function. What do we mean by
this? In one coordinate we write fϕ−1

U = g(z) and then the derivative with respect
to z is g′(z). But if we change coordinates then

fϕ−1
U ′ = g(h(u))

where h = ϕUϕ
−1
U ′ and then the derivative with respect to u is g′(h(u))h′(u) and not

g′(h(u)).

Definition 23 A meromorphic differential on a Riemann surface is a collection of
meromorphic functions fU on ϕU(U) such that on ϕU ′(U ∩ U ′)

fU = fU ′(h(u))h′(u)

where h = ϕUϕ
−1
U ′ .

The derivative df of any meromorphic function is a meromorphic differential but not
all are of this form.

Remark: 1. The transformation law is more easily described if we write a differential
as fU(z)dz, thinking of dz as the derivative of the locally defined coordinate z.

2. The residue of a differential at a pole is independent of the local coordinate.
This differs from a function, whose value is invariant. The simplest way to see the
invariance of the residue is to note that the transformation law for dz means that the
contour integral ∫

Γ

fdz

is well-defined and independent of coordinates. Cauchy’s residue theorem then gives
the invariance.
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Two differentials are defined by local functions fU , gU satisfying the conditions in
Definition 23. Then

fU
gU

=
fU ′

gU ′

on U ∩ U ′ and this defines a meromorphic function – the ratio of two meromorphic
differentials is a meromorphic function. This means that the divisors of any two
differentials are linearly equivalent, and this is called the canonical divisor class.

Examples:

1. The function z = z0/z1 on P1 is a meromorphic function with a simple pole at
[1, 0], because in the coordinate z̃ = z1/z0 near [1, 0] it is 1/z̃. Its derivative is the
differential

dz = d(z̃−1) = − 1

z̃2
dz̃

which has no zeros but has a double pole. A canonical divisor on P1 therefore has
degree −2.

2. The Weierstrass ℘-function ℘(z) has a double pole at z = 0. Its derivative has a
triple pole there and vanishes as we have seen at three points ω1/2, ω2/2, (ω1 +ω2)/2.
The degree of a canonical divisor here is then 3− 3 = 0.

Let κ be a canonical divisor, then the vector space L(κ) is isomorphic to the space of
holomorphic differentials. Since deg κ = −2 for P1 we see that here there are none.
For the torus deg κ = 0 which means that any holomorphic differential must have no
zeros, and so there is at most a one-dimensional space of them. In fact since

d(z +mω1 + nω2) = dz

the form dz is such a differential.

More generally:

Proposition 25 On a nonsingular algebraic curve of genus g, the degree of a canon-
ical divisor is 2g − 2.

Proof: We use the map f : C → P1 as in the proof of the degree-genus formula
defined by [x, y] ∈ P1. Let [a, 1] ∈ P1 be a point which is not a branch point and
consider the meromorphic function

g =
y

x− ay
.

57



(All we have done is composed f with a projective transformation of P1).

Then this meromorphic function has n simple poles so dg has n double poles. But g′

vanishes at the ramification points since by choice none of these lie over ∞, and in
the proof of Theorem 23 there are n(n− 1) of these. Hence the degree of the divisor
of dg is

n(n− 1)− 2n = 2g − 2

from Theorem 23. 2

The only differentials we have encountered so far are derivatives of meromorphic
functions, which can only have poles of order 2 or more since they are the derivatives
of (z − c)−m. But on P1 the differential dz/z has simple poles at 0 and ∞. If we
tried to integrate this we would get log z which is not meromorphic and not even
single-valued. So differentials with simple poles do exist, but there is a constraint. In
particular:

Proposition 26 A meromorphic differential cannot have a single simple pole.

Proof: Suppose for a contradiction that p is the pole of the differential ω. It has
non-zero residue and so taking a coordinate neighbourhood of p, and surrounding it
with a small contour Γ, we have ∫

Γ

ω 6= 0.

Now triangulate C such that each triangle lies in a coordinate neighbourhod and p lies
in the interior of one, ∆0. By Cauchy’s theorem the integral of ω around each triangle
∆i, i 6= 0 is zero and the integrations along adjacent adges of different triangles cancel
(this is like the proof of the Gauss-Bonnet Theorem in the Geometry of Surfaces
course.) But then the integral around ∆0 vanishes which is a contradiction. 2

Remark: It is clear that this argument can be extended to show that the sum of
the residues of a meromorphic differential is always zero.

5.3 Riemann-Roch

This is the theorem we aim to prove about the dimension `(D) of L(D):

Theorem 27 (Riemann-Roch) Let D be any divisor on a nonsingular projective al-
gebraic curve in P2 and let κ be a canonical divisor, then

`(D)− `(κ−D) = degD + 1− g.
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The theorem doesn’t tell us what the value of `(D) is, which can jump up and down
depending on the location of the points, but it tells us the difference of two such
numbers. This can be used to great effect. For example, if degD > g − 1 the right
hand side is positive so we know that `(D) ≥ 0. If degD > 2g−2, then deg(κ−D) < 0
so `(κ−D) = 0 and then we have an exact formula `(D) = degD + 1− g.

There is one class of divisors where we can already find lots of elements in L(D), and
we shall need this for the proof of the theorem. Take a line L in P2 and consider the
divisor

H =
∑
p∈L∩C

Ip(C,L)p.

By Bézout’s theorem the degree of H is n, the degree of the curve C.

If ax+ by + cz = 0, a′x+ b′y + c′z = 0 are two lines L,L′, then

f =
ax+ by + cz

a′x+ b′y + c′z

is a meromorphic function, so the divisor of the line L is linearly equivalent to the
divisor of L′.

Any algebraic curve Q(x, y, z) = 0 of degree m defines a divisor in the same way, and

Q(x, y, z)

(ax+ by + cz)m

is a meromorphic function, so the divisor of Q is in the class of mH. Two such
polynomials Q and Q′ define the same function on C if and only if they are divisible
by P , so we can find easily a large subspace of L(mH) just by counting polynomials.

Writing
Q(x, y, z) = b0(y, z) + b1(y, z)x+ . . .+ bm(y, z)xm

the coefficient bi(y, z) is homogeneous of degree m− i and so has m− i+1 coefficients.
Thus the vector space of all Q has dimension 1 + 2 + (m + 1) = (m + 1)(m + 2)/2.
The subspace of all Q = PR for R of degree m − n is then of dimension (m − n +
1)(m− n+ 2)/2 and so

`(mH) ≥ 1

2
((m+ 1)(m+ 2)− (m− n+ 1)(m− n+ 2)) = mn− 1

2
n(n− 3). (13)

The degree of H is the number of points of intersection of C with a line which is n,
so deg(mH) = mn. From the degree-genus formula we see that mn − n(n − 3)/2 =
deg(mH) + 1− g which is the right hand side of the Riemann-Roch formula.

We start the proof of Theorem 27 with a similar-looking proposition:
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Proposition 28 If D is any divisor on C then `(D)− `(κ−D) ≥ degD + 1− g.

Proof: We saw above that `(mH) ≥ deg(mH)+1−g. Moreover if m is large enough
deg(κ −mH) < 0 so `(κ −mH) = 0. Therefore we already have the inequality for
D = mH.

In the general case

D =
k∑
i=1

mipi −
∑̀
i=1

niqi

choose lines aix+ biy+ ciz = 0 that pass through the points pi then with m =
∑

imi

the divisor of

(a1x+ b1y + c1z)m1(a2x+ b2y + c2z)m2 . . . (akx+ bky + ckz)mk

is of the form
k∑
i=1

mipi +
N∑
j=1

rj = D + x1 + x2 + . . .+ xr.

Furthermore, this divisor is linearly equivalent to mH and so

`(mH) = `(D + x1 + x2 + . . .+ xr). (14)

By adding more xi we can assume that m is large enough that deg(κ−mH) < 0. We
now need the following lemma:

Lemma 29 For any point p,

0 ≤ `(D + p)− `(κ−D − p)− `(D) + `(κ−D) ≤ 1

Proof: Firstly f ∈ L(D) if and only if (f)+D ≥ 0 which clearly implies (f)+D+p ≥
0, so that L(D) ⊆ L(D + p) and

`(D + p) ≥ `(D).

Suppose

D =
k∑
i=1

mipi −
∑̀
i=1

niqi.

Take f ∈ L(D+ p). If p is not one of the pi or qj then f has at most a simple pole at
p. The condition for f to lie in L(D) is thus a single linear condition, the vanishing
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of the coefficient of (z − a)−1. If p = p1 say, then in the Laurent expansion around p
we have:

f(z) =
am1+1

(z − z1)m1+1
+ . . .+ a0 + . . .

and here for f to lie in L(D) is the vanishing of am1+1. If p = q1 then f has a zero of
order at least (n1 − 1) at q1 and to lie in L(D), must have a zero of order n1. This is
again one linear condition. In all cases we see that

dimL(D + p) ≤ dimL(D) + 1.

Applying this to D and κ − D − p, we see that the lemma holds so long as we can
eliminate the case

`(D + p)− `(D) = 1 `(κ−D)− `(κ−D − p) = 1.

Suppose for a contradiction that this holds. Then there is a meromorphic function f
with (f) +D+ p ≥ 0 but (f) +D 6≥ 0, so −p is the only negative term in (f) + (D).
Similarly there is g such that (g) + κ−D ≥ 0 but (g) + κ−D − p 6≥ 0 which means
that p does not appear in the divisor (g) + κ−D. Thus in

0 ≤ (f) +D + p+ (g) + κ−D = (fg) + κ+ p

the positive element p is not cancelled.

But κ is the divisor of a differential ω and this means that fgω is a differential with
a single simple pole at p, which is impossible from Proposition 26.

From the lemma, we have

`(D + x1 + . . .+ xr) − `(κ−D − x1 − . . .− xr)
≤ `(D + x1 + . . .+ xr−1)− `(κ−D − x1 − . . .− xr−1) + 1,

and repeating we see that

`(D + x1 + . . .+ xr)− `(κ−D − x1 − . . .− xr) ≤ `(D)− `(κ−D) + r

or, using (14),
`(mH)− `(κ−mH) ≤ `(D)− `(κ−D) + r

or
`(D)− `(κ−D) ≥ `(mH)− `(κ−mH)− r.

So, since we know the inequality for mH,

`(D)− `(κ−D) ≥ deg(mH) + 1− g − r = degD + 1− g

which establishes Proposition 28. 2
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The Riemann-Roch theorem follows directly from this: use the Proposition for D and
for κ−D then

`(D)− `(K −D) ≥ degD + 1− g

and

`(κ−D)− `(D) ≥ deg(κ−D) + 1− g
= 2g − 2− degD + 1− g
= − degD + g − 1

so equality holds.

5.4 Applications

The first consequence is another interpretation of the genus g:

Theorem 30 The vector space of holomorphic differentials on a nonsingular alge-
braic curve has dimension g, the genus of the curve.

Proof: This dimension is `(κ), so take D = 0 and use Riemann-Roch:

`(0)− `(κ) = 1− g.

But L(0) consists of holomorphic functions on C which are just the constants and
hence one-dimensional, so `(0) = 1, and so Riemann-Roch gives `(κ) = g. 2

We can actually write down these differentials. First consider the affine part of the
curve given by P (x, y, 1) = 0. Then x is a local coordinate where ∂P/∂y 6= 0 so
consider the differential

ω =
dx

∂P/∂y(x, y, 1)
.

At first sight this seems to have poles where the denominator vanishes but this is just
where the role of x as a local coordinate breaks down. Since the curve is nonsingular,
at such points ∂P/∂x 6= 0 and from the chain rule, on the curve (∂P/∂x)dx +
(∂P/∂y)dy ≡ 0, so that ω can also be written, using y as a coordinate, as

ω = − dy

∂P/∂x(x, y, 1)
.

This form has no poles and no zeros in the affine part of the curve.
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Now look at C near z = 0. We have

d(x/z)

∂P/∂y(x/z, y/z, 1)
=

d(x/z)

∂P/∂y(1, y/x, z/x)(x/z)n−1
=

−d(z/x)(x/z)2

∂P/∂y(1, y/x, z/x)(x/z)n−1

and so

ω =
−zn−3dz

∂P/∂y(1, y, z)

and has a zero of order n− 3 where z = 0.

This tells us that κ ∼ (n− 3)H, and so we can obtain a holomorphic differential by
writing

Q(x, y, 1)dx

∂P/∂y(x, y, 1)
.

for a homogeneous polynomial Q(x, y, z) of degree n−3. The dimension of the space of
polynomials of this degree is (n−2)(n−1)/2 which is g from the degree-genus formula.
Riemann-Roch therefore tells us that every holomorphic differential is obtained from
a polynomial this way.

Example: For a cubic curve n = 3 and the construction gives, up to a constant
multiple, the unique holomorphic differential. If the cubic is

y2 = 4(x− e1)(x− e2)(x− e3)

then this is dx/2y, and if y = ℘′(z), x = ℘(z) as in section 4.4, this is the differential
dz/2.

Example: When the curve C is a quartic, i.e. n = 4, then κ ∼ H, so the zeros of a
holomorphic differential are the intersections of C with a line.

If m > (n− 3) then deg(κ−mH) < 0 so Riemann-Roch gives

`(mH) = mn+ 1− g = mn− n(n− 3)/2.

This is the lower bound we obtained in (13) by explicitly writing down polynomials
so we have a concrete construction also for the divisor class mH.

Another corollary of the theorem provides a link between the complex analysis and
the algebra. We have been considering meromorphic functions a great deal and these
are defined as analytical or geometrical objects. They are in fact all expressed in
terms of polynomials:
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Theorem 31 Any meromorphic function on a nonsingular curve C is expressible as
a ratio of homogeneous polynomials of the same degree:

f =
Q(x, y, z)

R(x, y, z)
.

Proof: We showed using Riemann-Roch that L(mH) for m ≥ n− 3 is generated by
polynomials, in other words every meromorphic function f with

(f) +mH ≥ 0

is of the form Q(x, y, z)/(ax+ by + cz)m.

If f is any meromorphic function, then taking lines Li which pass through the poles
of f , we have, for some m

(f) +H1 + . . .+Hm ≥ 0

and the same argument shows that f is a rational function. 2

5.5 The group law on a cubic

An important property of a cubic curve is that the points on it form an abelian group.
It has a very geometrical description:

Theorem 32 Let C be a nonsingular curve of degree 3 and let e be an inflection
point. There is a unique additive group structure on C such that e is the identity
element and p1 +p2 +p3 = 0 if and only if p1, p2, p3 are the three points of intersection
(counting multiplicities) of C with a line.
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Proof: The addition of divisors is commutative and associative. This is also true of
their linear equivalence classes since if p = p′+(f), q = q′+(g) then p+q = p′+q′+(fg).
We noted earlier that p is linearly equivalent to q only if g = 0, so for any curve C
of genus g > 0 the equivalence class of p determines p uniquely. We could also use
Riemann-Roch: if D = p then since degD = 1 > 0 = deg κ we have `(κ − D) = 0
and

`(D) = 1 + 1− 1 = 1.

For the cubic, with g = 1, we take an inflection point e and map p 7→ [p− e] into the
group of equivalence classes of degree zero divisors. From the above, this is injective.
Moroever [e− e] = [0] is clearly an identity.

Then p+ q maps to [p+ q − 2e] and we want to show that this is of the form [s− e].
The line ax + by + cz = 0 joining p and q (or the tangent at p if p = q) meets the
degree 3 curve in a third point r by Bézout’s theorem. Let a′x+ b′y + c′z = 0 be the
tangent at e, then the divisor of its intersection with C is 3e since e is an inflection
point.

If f = (ax+ by + cz)/(a′x+ b′y + c′z), the divisor of f is

(f) = p+ q + r − 3e

which shows that [p+ q − 2e] = [e− r].

Now take q = e in this expression, then [p − e] = [e − p′] for some p′ which we call
the inverse of p.

In general then
[p+ q − 2e] = [e− r] = [r′ − e]

as required, proving that C is closed under the addition law. 2

In Section 4.4 we showed how a torus C/Γ could be mapped isomorphically to a cubic
curve by the Weierstrass ℘-function. Since C/Γ is clearly an abelian group it seems
reasonable to believe that this is the addition law described geometrically above. This
will be so if (1, ℘(u), ℘′(u)), (1, ℘(v), ℘′(v)), (1, ℘(w), ℘′(w)) are linearly dependent if
w = −(u+ v), so consider

det

 1 ℘(u) ℘′(u)
1 ℘(v) ℘′(v)
1 ℘(−u− v) ℘′(−u− v)

 .

Fix v and vary u, then this has a pole at u = 0 and ℘(u) = 1/u2 + a(u) where a(u)
is holomorphic. So expanding the determinant gives

− 1

u2
(℘′(−u− v)− ℘′(v))− 2

u3
(℘(−u− v)− ℘(v)) + h(u)
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where h(u) is holomorphic near u. But

℘(−u− v) = ℘(u+ v) = ℘(v) + u℘′(v) + u2℘′′(v)/2 + u3℘′′′(v)/6 + . . .

so this is

− 1

u2
(−2℘′(v)− u℘′′(v)− u2℘′′′(v)/2)− 2

u3
(u℘′(v) + u2℘′′(v)/2 + u3℘′′′(v)/6) + k(u)

where k(u) is holomorphic. But the singular terms cancel so the determinant is finite
near u = 0, and similarly near u = −v. But then it is holomorphic everywhere and
hence constant. But when u = v it vanishes, and so it is identically zero.

Remark: The inflection points are the points p such that the divisor of a line is 3p,
or in the group law 3[p− e] = 0. Given that the group law is addition in C/Γ these
are the nine points of order 3 in the group.
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