Professor Joyce B3.3 Algebraic Curves Hilary Term 2019

Problem Sheet 1

1(a) Let \mathbb{Z}_2 be the field with two elements $\{0, 1\}$. Show that the number of points in *n*-dimensional projective space over \mathbb{Z}_2 is $2^{n+1} - 1$. How many projective lines are there in this space?

(b) What are the answers if \mathbb{Z}_2 is replaced by \mathbb{Z}_p , the field with p elements for p prime?

2. Find a 1-1 correspondence between the lines in \mathbb{R}^2 and the complement of a point in $\mathbb{P}(\mathbb{R}^3)$.

3. Let $\mathbb{P}(V)$ be a projective space of dimension 3, and let L_1, L_2, L_3 be non-intersecting projective lines in $\mathbb{P}(V)$.

(a) Show that there are unique isomorphisms $\alpha : L_1 \to L_2, \beta : L_1 \to L_3$ such that $x, \alpha(x), \beta(x)$ are collinear for each $x \in L_1$.

(b) Suppose $\phi : L_1 \to L_1$ is a projective transformation of L_1 . Show that there exists a unique projective transformation $\Phi : \mathbb{P}(V) \to \mathbb{P}(V)$ such that $\Phi(L_j) = L_j$ and $\Phi|_{L_1} = \phi$.

4(a) Define $\Phi : \mathbb{CP}^1 \times \mathbb{CP}^1 \to \mathbb{CP}^3$ by

 $\Phi([x_0, x_1], [y_0, y_1]) = [x_0y_0, x_0y_1, x_1y_0, x_1y_1].$

Show that Φ is well defined and injective, and the image of Φ is of the form $\{[z_0, z_1, z_2, z_3] \in \mathbb{CP}^3 : Q(z_0, \ldots, z_3) = 0\}$ for a homogeneous quadratic polynomial Q.

(b) Write down a similar map $\Psi : \mathbb{CP}^1 \times \mathbb{CP}^1 \to \mathbb{CP}^3$ with image

$$\{[z_0, z_1, z_2, z_3] \in \mathbb{CP}^3 : z_0^2 + \dots + z_3^2 = 0\}.$$

5. Find explicitly the projective transformation of \mathbb{CP}^2 that takes the points [1,0,0], [1,1,0], [0,0,1] and [0,1,1] to [1,2,3], [1,0,1], [0,1,0] and [1,0,-1] respectively.

6. (Optional). Find a projective transformation of \mathbb{CP}^2 that takes the lines x + 2y + 3z = 0, x + z = 0, y = 0 and x - z = 0 to the lines x = 0, x + y = 0, z = 0 and y + z = 0 respectively. Compare this question to q. 5. What does this tell you about the relation between lines and points in \mathbb{CP}^2 ?

DDJ