B2.2 Commutative Algebra Problem Sheet 2

1. Let F be a field and let Y be a set of polynomials in k variables over F. Prove that there exist finitely many polynomials $f_1, \ldots, f_m \in Y$ such that for $u_1, \ldots, u_k \in F^k$,

 $f(u_1, \ldots, u_k) = 0$ for all $f \in Y \iff f_j(u_1, \ldots, u_k) = 0$ for all $j = 1, \ldots, m$.

- 2. Let F be a field and let W be an algebraic set in F^k . Put $I := \mathcal{I}(W)$. Then
 - (i) $W = \mathcal{V}(I)$.
 - (ii) $I = \operatorname{rad}(I)$.
 - (iii) Both F^k and \emptyset are algebraic sets.
 - (iv) The union of two algebraic sets in F^k is an algebraic set.
 - (v) The intersection of any collection of algebraic sets in F^k is an algebraic set.

Remark: (iii)-(v) say that the set of all algebraic sets in F^k is the set of closed sets in a certain topology: this is called the *Zariski topology*.

- 3. An algebraic set W is *irreducible* if it is not the union of two proper algebraic subsets.
 - (i) Prove that W is irreducible if and only if $\mathcal{I}(W)$ is a prime ideal.
 - (ii) Prove that every algebraic set is the union of finitely many irreducible algebraic subsets. Hint: consider a counterexample W with $\mathcal{I}(W)$ as big as possible.
 - (iii) Let W be an algebraic set. What is wrong with the following argument? If $I = \mathcal{I}(W)$ then $I = \operatorname{rad}(I) = P_1 \cap \cdots \cap P_m$ with the P_i minimal primes of I. Then $W = \bigcup V_i$ where $V_i = \mathcal{V}(P_i)$ is irreducible.
- 4. Let F be a field and $R = F[t_1, \ldots, t_k]$. For $\mathbf{u} = (u_1, \ldots, u_k) \in F^k$ define $\epsilon_{\mathbf{u}} : R \to F$ by $e_{\mathbf{u}}(f) = f(\mathbf{u}) = f(u_1, \ldots, u_k)$ and set $\mu(\mathbf{u}) := \langle t_1 u_1, t_2 u_2, \ldots, t_k u_k \rangle$, an ideal of R.
 - (i) Prove that $R = \mu(\mathbf{u}) \oplus F$.
 - (ii) Deduce that $\mu(\mathbf{u})$ is a maximal ideal in R.
 - (iii) Prove $\mu(\mathbf{u}) = \ker e_{\mathbf{u}}$.
 - (iv) Show that $\mu(\mathbf{u}) = \mu(\mathbf{v})$ if and only if $\mathbf{u} = \mathbf{v}$.
 - (v) Prove that an ideal I of R is of the form $\mu(\mathbf{u})$ for some $\mathbf{u} \in F^k$ if and only if it has codimension one, i.e. $\dim_F(R/I) = 1.$
- 5. (i) Let F be a field and $R = F[t_1, \ldots, t_k]$. Let Y be a subset of R; then $\mu(\mathcal{V}(Y))$ is a set of maximal ideals of R: identify this set. (Now you have transformed geometry into algebra!)
 - (ii) Suppose that F is not algebraically closed. Prove that not every maximal ideal of R is of the form $\mu(\mathbf{u})$.
- 6. Let F be an algebraically closed field and f_1, \ldots, f_n polynomials in k variables over F. The system of simultaneous equations

 $\mathcal{F}: \quad f_1(x_1, \dots, x_k) = 0, \dots, f_n(x_1, \dots, x_k) = 0$

is said to be *inconsistent* if there exist polynomials g_1, \ldots, g_n such that $f_1g_1 + \cdots + f_ng_n = 1$.

- (i) Prove that the system of equations \mathcal{F} has a solution in F^k if and only if it is not inconsistent.
- (ii) Suppose that all the f_i have coefficients in \mathbb{Q} , and that the system \mathcal{F} has a solution in \mathbb{C}^k . Prove that it has a solution (x_1, \ldots, x_k) with each x_i an algebraic number (i.e. algebraic over \mathbb{Q}).