B2.2 Commutative Algebra Problem Sheet 4

- An integral domain R is said to be integrally closed if R is its own integral closure in its field of fractions.
- If P is an ideal of R, the height h(P) of P is the maximal length n of a chain of prime ideals

$$P_0 < P_1 < \dots < P_n = P$$
.

Note that $\dim(R)$ is the supremum of h(P) over all prime ideals P (or maximal ideals, of course), of R.

1. Re-prove the 'Weak Nullstellensatz', Theorem 4.4:

if E is a finitely generated F-algebra where $E \supseteq F$ are fields, then [E : F] is finite from the 'Noether Normalisation Lemma', Theorem 8.8.

- 2. (i) Let F be an infinite field. Deduce from Sheet 3 Question 4(i) that $J(F[t_1,\ldots,t_k])$ is zero.
 - (ii) Show that if $R \subseteq S$ is an integral extension then $J(S) \cap R = J(R)$. Deduce that if, in addition, S is an integral domain, then $J(S) = \{0\}$ if and only if $J(R) = \{0\}$.
 - (iii) Now let F be an arbitrary field. Using the Noether Normalisation Lemma, deduce that every finitely generated F-algebra is a Jacobson ring.
- 3. (i) Prove that \mathbb{Q} is not a finitely generated \mathbb{Z} -algebra.
 - (ii) Let F be a field which is finitely generated as a \mathbb{Z} -algebra. Prove that $\operatorname{char}(F) \neq 0$. Hint: Suppose that F has characteristic zero. Consider the three rings $\mathbb{Z} \subseteq \mathbb{Q} \subseteq F$.
 - (iii) Let S be a finitely generated \mathbb{Z} -algebra and M a maximal ideal of S. Prove that $|S/M| < \infty$.
- 4. Let R be a subring of a field E and Y a multiplicatively closed subset of R with $1 \in Y$ and $0 \notin Y$. Let S be the integral closure of R in E. Prove that the integral closure of $Y^{-1}R$ in E is $Y^{-1}S$.
- 5. Let R be an integrally closed domain with field of fractions F, let $E \supseteq F$ be an algebraic field extension and let $a \in E$. Show a is integral over R if and only if the (monic) minimal polynomial of a over F lies in R[t].

 Hint: consider a suitable splitting field.

Does this necessarily hold if R is not integrally closed?

- 6. Let R be an integrally closed, Noetherian, local, integral domain of dimension 1, with unique maximal ideal P. Using the steps below, or otherwise, prove that R is a principal ideal domain.
 - (i) Let $0 \neq a \in P$. Show that for some $n \geq 1$ we have $P^{n-1} \nsubseteq aR$ and $P^n \subseteq aR$, where $P^0 := R$. Let $b \in P^{n-1} \setminus aR$ and put $y = a^{-1}b$. Show that if $yP \subseteq P$ then $y \in R$. Deduce in fact $yP \nsubseteq P$. Hint: consider the action of y on the R-module P.
 - (ii) Now deduce that yP = R and hence that P is a principal ideal.
 - (iii) Let I be a proper, non-zero ideal of R. Prove that $I = P^n$ for some $n \ge 1$. Hint: first show that there is a maximal n for which $I \subseteq P^n$.
- 7. Let R be a ring, not necessarily Noetherian. Let P be a prime ideal of S = R[t] with $t \in P$. Show that if h(P/tS) is finite then h(P) > h(P/tS).

Hint: show that if Q is a prime ideal of R, then QS is prime in S.

Deduce that if $\dim(R)$ is finite then $\dim(S) > \dim(R)$.