MFoCS questions should be done by MFoCS students, although everyone is encouraged to try them; we may not have time to go through them in classes. Questions (or parts of questions) marked with a + sign are intended as a challenge for enthusiasts: we will not go through them in classes!

1. Write down all antichains contained in $\mathcal{P}(1)$ and $\mathcal{P}(2)$. How many different antichains are there in $\mathcal{P}(3)$?
2. Let $k \leq n / 2$, and suppose that \mathcal{F} is an antichain in $\mathcal{P}(n)$ such that every $A \in \mathcal{F}$ has $|A| \leq k$. Prove that $|\mathcal{F}| \leq\binom{ n}{k}$.
3. Let (P, \leq) be a poset. Suppose that every chain in P has at most k elements. Prove that P can be written as the union of k antichains.
4. Suppose $\mathcal{F} \subset \mathcal{P}(n)$ is a set system containing no chain with $k+1$ sets.
(a) Prove that

$$
\sum_{i=0}^{n} \frac{\left|\mathcal{F}_{i}\right|}{\binom{n}{i}} \leq k,
$$

where $\mathcal{F}_{i}=\mathcal{F} \cap[n]^{(i)}$ for each i.
(b) What is the maximum possible size of such a system?
5. (a) Look up Stirling's Formula. Use it to find an asymptotic estimate of form $(1+o(1)) f(n)$ for $\binom{n}{n / 2}$.
(b) Now do the same for $\binom{n}{p n}$ where $p \in(0,1)$ is a constant. Write your answer in terms of the binary entropy function $H(p)=-p \log p-$ $(1-p) \log (1-p)$.
6. (MFoCS) Let $f(n)$ be the number of subsets $\mathcal{A} \subset \mathcal{P}(n)$ such that \mathcal{A} is an antichain.
(a) Prove that $f(n) \geq 2\binom{n}{\lfloor n / 2\rfloor}$ for every n.
(b) Prove that, for every $\epsilon>0, f(n) \leq 2^{\epsilon^{2 n}}$ for all sufficiently large n.
(c) ${ }^{+}$Prove that there is a constant $C>0$ such that

$$
f(n) \leq C^{\left(\begin{array}{l}
n / 2\rfloor
\end{array}\right)}
$$

for every n.
7. Let \mathcal{A} be an antichain not of the form $[n]^{(r)}$. Must there exist a maximal chain disjoint from \mathcal{A} ?
8. (Another proof of Sperner's Lemma) Given antichains \mathcal{A} and \mathcal{B} we write

$$
\mathcal{A} \vee \mathcal{B}=\{X \in \mathcal{A} \cup \mathcal{B} \text { such that } \forall Y \in \mathcal{A} \cup \mathcal{B} \text { we have } X \nsubseteq Y\}
$$

for the set of inclusion-maximal elements of $\mathcal{A} \cup \mathcal{B}$, and

$$
\mathcal{A} \wedge \mathcal{B}=\{X \in \mathcal{A} \cup \mathcal{B} \text { such that } \forall Y \in \mathcal{A} \cup \mathcal{B} \text { we have } Y \nsubseteq X\}
$$

for the set of inclusion-minimal elements of $\mathcal{A} \cup \mathcal{B}$.
(a) Show that

$$
\mathcal{A} \cap \mathcal{B} \subseteq(\mathcal{A} \vee \mathcal{B}) \cap(\mathcal{A} \wedge \mathcal{B})
$$

and

$$
\mathcal{A} \cup \mathcal{B}=(\mathcal{A} \vee \mathcal{B}) \cup(\mathcal{A} \wedge \mathcal{B})
$$

(b) Let m be the maximal size of an antichain. By using part (a), show that if \mathcal{A} and \mathcal{B} are antichains of size m then so are $\mathcal{A} \vee \mathcal{B}$ and $\mathcal{A} \wedge \mathcal{B}$.
(c) Let $\Gamma=\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{K}\right\}$ be the set of all antichains of size m, and let $\mathcal{A}=\mathcal{A}_{1} \vee\left(\mathcal{A}_{2} \vee\left(\cdots \vee\left(\mathcal{A}_{K-1} \vee \mathcal{A}_{K}\right) \ldots\right)\right)$. Show that \mathcal{A} is fixed by permutations of the ground set $[n]$; that is, if σ is a permutation of $[n]$ and we write $\sigma(A)=\{\sigma(a): a \in A\}$ and $\sigma(\mathcal{A})=\{\sigma(A): A \in \mathcal{A}\}$, we have that $\sigma(\mathcal{A})=\mathcal{A}$.
(d) Deduce that the maximum size m of an antichain is $\binom{n}{\lfloor n / 2\rfloor}$.
9. We say that a family \mathcal{A} splits $[n]$ if for every distinct $i, j \in[n]$ there exists $A \in \mathcal{A}$ such that $i \in A$ and $j \notin A$. Find a tight upper bound for n in terms of $|\mathcal{A}|$.
10. We say that a chain is symmetric if it is of the form $A_{k} \subset A_{k+1} \subset \cdots \subset$ A_{n-k} where $A_{r} \in[n]^{(r)}$. In this question we will partition $\mathcal{P}(n)$ into symmetric chains (which, of course, implies Sperner's lemma).
(a) Consider a bipartite graph G with vertex partitions given by $X=[n]^{(k)} \cup[n]^{(n-k-1)}$ and $Y=[n]^{(n-k)} \cup[n]^{(k+1)}$ for some $0 \leq$
$k \leq\lfloor n / 2\rfloor-1$, with edges as follows. Between $[n]^{(k)}$ and $[n]^{(k+1)}$ and between $[n]^{(n-k)}$ and $[n]^{(n-k-1)}$ we have edges as found in the discrete cube Q_{n}, and between $[n]^{(k+1)}$ and $[n]^{(n-k-1)}$ we place an arbitrary perfect matching. Show that G satisfies the conditions of Hall's marriage theorem and thus contains a perfect matching.
(b) Deduce that $\mathcal{P}(n)$ has a decomposition into symmetric chains.

