Combinatorics C8.3 Problems 1 JL MT2019

MFoCS questions should be done by MFoCS students, although everyone is encouraged to try them; we may not have time to go through them in classes. Questions (or parts of questions) marked with a + sign are intended as a challenge for enthusiasts: we will not go through them in classes!

- 1. Write down all antichains contained in $\mathcal{P}(1)$ and $\mathcal{P}(2)$. How many different antichains are there in $\mathcal{P}(3)$?
- 2. Let $k \leq n/2$, and suppose that \mathcal{F} is an antichain in $\mathcal{P}(n)$ such that every $A \in \mathcal{F}$ has $|A| \leq k$. Prove that $|\mathcal{F}| \leq {n \choose k}$.
- 3. Let (P, \leq) be a poset. Suppose that every chain in P has at most k elements. Prove that P can be written as the union of k antichains.
- 4. Suppose $\mathcal{F} \subset \mathcal{P}(n)$ is a set system containing no chain with k+1 sets.
 - (a) Prove that

$$\sum_{i=0}^{n} \frac{|\mathcal{F}_i|}{\binom{n}{i}} \leq k,$$

where $\mathcal{F}_i = \mathcal{F} \cap [n]^{(i)}$ for each *i*.

- (b) What is the maximum possible size of such a system?
- 5. (a) Look up Stirling's Formula. Use it to find an asymptotic estimate of form (1 + o(1))f(n) for $\binom{n}{n/2}$.
 - (b) Now do the same for $\binom{n}{pn}$ where $p \in (0, 1)$ is a constant. Write your answer in terms of the binary entropy function $H(p) = -p \log p (1-p) \log(1-p)$.
- 6. (MFoCS) Let f(n) be the number of subsets $\mathcal{A} \subset \mathcal{P}(n)$ such that \mathcal{A} is an antichain.
 - (a) Prove that $f(n) \ge 2^{\binom{n}{\lfloor n/2 \rfloor}}$ for every n.
 - (b) Prove that, for every $\epsilon > 0$, $f(n) \le 2^{\epsilon 2^n}$ for all sufficiently large n.
 - $(c)^+$ Prove that there is a constant C > 0 such that

$$f(n) \le C^{\binom{n}{\lfloor n/2 \rfloor}}$$

for every n.

- 7. Let \mathcal{A} be an antichain not of the form $[n]^{(r)}$. Must there exist a maximal chain disjoint from \mathcal{A} ?
- 8. (Another proof of Sperner's Lemma) Given antichains \mathcal{A} and \mathcal{B} we write

$$\mathcal{A} \lor \mathcal{B} = \{ X \in \mathcal{A} \cup \mathcal{B} \text{ such that } \forall Y \in \mathcal{A} \cup \mathcal{B} \text{ we have } X \not\subseteq Y \}$$

for the set of inclusion-maximal elements of $\mathcal{A} \cup \mathcal{B}$, and

$$\mathcal{A} \land \mathcal{B} = \{ X \in \mathcal{A} \cup \mathcal{B} \text{ such that } \forall Y \in \mathcal{A} \cup \mathcal{B} \text{ we have } Y \not\subseteq X \}$$

for the set of inclusion-minimal elements of $\mathcal{A} \cup \mathcal{B}$.

(a) Show that

$$\mathcal{A} \cap \mathcal{B} \subseteq (\mathcal{A} \lor \mathcal{B}) \cap (\mathcal{A} \land \mathcal{B})$$

and

$$\mathcal{A} \cup \mathcal{B} = (\mathcal{A} \lor \mathcal{B}) \cup (\mathcal{A} \land \mathcal{B}).$$

- (b) Let *m* be the maximal size of an antichain. By using part (a), show that if \mathcal{A} and \mathcal{B} are antichains of size *m* then so are $\mathcal{A} \vee \mathcal{B}$ and $\mathcal{A} \wedge \mathcal{B}$.
- (c) Let $\Gamma = \{\mathcal{A}_1, \ldots, \mathcal{A}_K\}$ be the set of all antichains of size m, and let $\mathcal{A} = \mathcal{A}_1 \lor (\mathcal{A}_2 \lor (\cdots \lor (\mathcal{A}_{K-1} \lor \mathcal{A}_K) \ldots))$. Show that \mathcal{A} is fixed by permutations of the ground set [n]; that is, if σ is a permutation of [n] and we write $\sigma(\mathcal{A}) = \{\sigma(a) : a \in \mathcal{A}\}$ and $\sigma(\mathcal{A}) = \{\sigma(\mathcal{A}) : \mathcal{A} \in \mathcal{A}\}$, we have that $\sigma(\mathcal{A}) = \mathcal{A}$.
- (d) Deduce that the maximum size m of an antichain is $\binom{n}{\lfloor n/2 \rfloor}$.
- 9. We say that a family \mathcal{A} splits [n] if for every distinct $i, j \in [n]$ there exists $A \in \mathcal{A}$ such that $i \in A$ and $j \notin A$. Find a tight upper bound for n in terms of $|\mathcal{A}|$.
- 10. We say that a chain is symmetric if it is of the form $A_k \subset A_{k+1} \subset \cdots \subset A_{n-k}$ where $A_r \in [n]^{(r)}$. In this question we will partition $\mathcal{P}(n)$ into symmetric chains (which, of course, implies Sperner's lemma).
 - (a) Consider a bipartite graph G with vertex partitions given by $X = [n]^{(k)} \cup [n]^{(n-k-1)}$ and $Y = [n]^{(n-k)} \cup [n]^{(k+1)}$ for some $0 \leq 1$

 $k \leq \lfloor n/2 \rfloor - 1$, with edges as follows. Between $[n]^{(k)}$ and $[n]^{(k+1)}$ and between $[n]^{(n-k)}$ and $[n]^{(n-k-1)}$ we have edges as found in the discrete cube Q_n , and between $[n]^{(k+1)}$ and $[n]^{(n-k-1)}$ we place an arbitrary perfect matching. Show that G satisfies the conditions of Hall's marriage theorem and thus contains a perfect matching.

(b) Deduce that $\mathcal{P}(n)$ has a decomposition into symmetric chains.