STOCHASTIC DIFFERENTIAL EQUATIONS MATH C8.1 - 2019 - SHEET 4

1. Sheet 4

- (i) Let $(M_t)_{t \in [0,\infty)}$ be a continuous local martingale that vanishes at zero. Let $(\mathcal{E}(M)_t)_{t \in [0,\infty)}$ denote the stochastic exponential.
 - (a) Show that $(\mathcal{E}(M)_t)_{t \in [0,\infty)}$ is a nonnegative continuous local martingale.
 - (b) Show that $(\mathcal{E}(M)_t)_{t \in [0,\infty)}$ is a supermartingale with $\mathbb{E}[\mathcal{E}(M)_t)] \leq 1$ for every $t \in [0,\infty)$.
 - (c) Show that $(\mathcal{E}(M)_t)_{t\in[0,\infty)}$ is a continuous martingale if and only if $\mathbb{E}[\mathcal{E}(M)_t)] = 1$ for every $t \in [0,\infty)$.
- (ii) The following is Kazamaki's criterion. Let $(L_t)_{t \in [0,\infty)}$ be a continuous local martingale. Prove that if $(\exp(\frac{1}{2}L_t))_{t \in [0,\infty)}$ is a uniformly integrable submartingale, then the stochastic exponential $(\mathcal{E}(L)_t)_{t \in [0,\infty)}$ is a uniformly integrable martingale.

Hint: Show for every $\alpha \in (0, 1)$ that

$$\mathcal{E}(\alpha L_t) = \left(\mathcal{E}(L)_t\right)^{\alpha^2} (Z_t^{\alpha})^{1-\alpha^2},$$

for $Z_t^{\alpha} = \exp(\frac{\alpha}{1+\alpha}L_t)$. Use Hölder's inequality, Question (i), and the optional stopping theorem to prove that, for every stopping time T, for every $A \in \mathcal{F}$,

$$\mathbb{E}\left[\mathcal{E}(\alpha L_T)\mathbf{1}_A\right] \le \mathbb{E}\left[Z_T^{\alpha}\mathbf{1}_A\right]^{1-\alpha^2}$$

Conclude using the assumption and $\alpha \in (0,1)$ that $(Z_t^{\alpha})_{t \in [0,\infty)}$ is a uniformly integrable submartingale, and therefore that the family

 $\{\mathcal{E}(\alpha L_T)\}$: T is a stopping time $\}$ is a uniformly integrable,

and therefore that $(\mathcal{E}(\alpha L_t))_{t \in [0,\infty)}$ is a uniformly integrable martingale. Hence, for every $\alpha \in (0,1)$,

$$1 = \mathbb{E}[\mathcal{E}(\alpha L_{\infty})] \le \mathbb{E}[Z_{\infty}^{\alpha}]^{1-\alpha^{2}}.$$

Use the assumption and the dominated convergence theorem to pass to the limit $\alpha \to 1$ to conclude that

$$\mathbb{E}[\mathcal{E}(L)_{\infty}] = 1,$$

and therefore using Question (i) conclude that $(\mathcal{E}(L)_t)_{t\in[0,\infty)}$ is a martingale.

(iii) The following is Novikov's criterion. Prove that if $(L_t)_{t \in [0,\infty)}$ is a continuous local martingale which satisfies

$$\mathbb{E}\left[\exp\left(\frac{1}{2}\langle L\rangle_{\infty}\right)\right] < \infty,$$

then $(\mathcal{E}(L))_{t \in [0,\infty)}$ is a uniformly integrable martingale.

(Hint: Show that Novikov's criterion implies Kazamaki's criterion. First use the fact that the exponential integrability implies for every $p \in (0, \infty)$ that

$$\mathbb{E}\left[\langle L\rangle_{\infty}^{\frac{p}{2}}\right] < \infty$$

Use this fact and the Burkholder-Davis-Gundy inequalities to prove that $(L_t)_{t \in [0,\infty)}$ is a uniformly integrable martingale. Then use the equality

$$\exp\left(\frac{1}{2}L_{\infty}\right) = \mathcal{E}(L)_{\infty}^{\frac{1}{2}} \exp\left(\frac{1}{4}\langle L \rangle_t\right),$$

Hölder's inequality, Question (i), and the assumptions to conclude that

$$\mathbb{E}\left[\exp\left(\frac{1}{2}L_{\infty}\right)\right] < \infty.$$

Use this fact to conclude that $(\exp(\frac{1}{2}L_t))_{t\in[0,\infty)}$ is a uniformly integrable submartingale, and then apply Kazamaki's criterion.

- (iv) Let $(B_t)_{t\in[0,\infty)}$ be a standard one-dimensional Brownian motion defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with respect to a filtration $(\mathcal{F}_t)_{t\in[0,\infty)}$. Suppose that $b \colon \mathbb{R} \to \mathbb{R}$ is a bounded, measurable function. Define measures $\{\mathbb{Q}_T\}_{T\in(0,\infty)}$ on $\{(\Omega, \mathcal{F}_T, \mathbb{P})\}_{T\in(0,\infty)}$ which satisfy the following three properties.
 - (a) The measures are compatible in the sense that $\mathbb{Q}_{T_1} = \mathbb{Q}_{T_2}$ on \mathcal{F}_{T_1} for every $T_1 \leq T_2 \in [0,\infty)$.
 - (b) For every $T \in [0, \infty)$ the measure \mathbb{Q}_T is mutually absolutely continuous with respect to \mathbb{P} on $(\Omega, \mathcal{F}_T, \mathbb{P})$.
 - (c) The process $(\tilde{B}_t)_{t \in [0,\infty)}$ defined by

$$\tilde{B}_t = B_t - \int_0^t b(B_s) \,\mathrm{d}B_s,$$

is for every $T \in (0, \infty)$ a standard Brownian motion with respect to $(\mathbb{Q}_T, \mathcal{F}_T)$ on [0, T]. Prove that for every $T \in (0, \infty)$ the pair $(B_t, \tilde{B}_t)_{t \in [0,T]}$ is a weak solution to the equation

(1.1)
$$\begin{cases} dB_t = b(B_t) dt + d\tilde{B}_t & \text{in } (0,T), \\ B_0 = 0, \end{cases}$$

with respect to $(\mathbb{Q}_T, \mathcal{F}_T)$. Deduce that uniqueness in law holds for (1.1).

- (v) (Skorokhod's Lemma) Let $y: [0, \infty) \to \mathbb{R}$ be a real-valued function that satisfies $y(0) \ge 0$. Prove that there exist unique functions $a, z: [0, \infty) \to \mathbb{R}$ which satisfy the following three properties.
 - (a) We have the decomposition

$$z = y + a.$$

(b) The function z is nonnegative

$$z \ge 0.$$

(c) The function a is increasing, continuous, and vanishes at zero and the corresponding Riemann-Stieltjes measure da is supported on the set $\{s : z(s) = 0\}$.

Furthermore, the function a is given by

$$a(t) = \left[\sup_{s \in [0,t]} \left(-y(s)\right)\right] \lor 0.$$

(vi) Let $(B_t)_{t \in [0,\infty)}$ be a standard one-dimensional Brownian motion. Define the process $(X_t)_{t \in [0,\infty)}$ by

$$X_t = \int_0^t \operatorname{sgn}(B_s) \, \mathrm{d}B_s$$

(a) Show that $(X_t)_{t \in [0,\infty)}$ is a standard Brownian motion with respect to the filtration

$$\mathcal{F}_t^{|B|} = \sigma(|B_s| : s \in [0, t]).$$

Furthermore, observe that $\mathcal{F}_t^{|B|} \subsetneq \mathcal{F}_t^B$. (b) Let $(L_t^0)_{t \in [0,\infty)}$ denote the local time of $(B_t)_{t \in [0,\infty)}$ at zero. Prove that

$$L_t^0 = \sup_{s \in [0,t]} \left(-X_s \right).$$

- (c) Let $(S_t)_{t \in [0,\infty)}$ be defined by $S_t = \sup_{s \in [0,t]} |B_s|$. Show that the two-dimensional processes $(S_t - B_t, S_t)$ and $(|B_t|, L_t^0)$ have the same law.
- (d) For every $a \in \mathbb{R}$ let $(L_t^a)_{t \in [0,\infty)}$ denote the local time of $(B_t)_{t \in [0,\infty)}$ at $a \in \mathbb{R}$. Deduce for every $a \in \mathbb{R}$ that $\mathbb{P}[L_{\infty}^{a} = \infty] = 1$.
- (vii) Let $(B_t)_{t\in[0,\infty)}$ be a standard one-dimensional Brownian motion. Prove that the stochastic differential equation

(1.2)
$$\begin{cases} \mathrm{d}X_t = \mathrm{sgn}(X_t) \,\mathrm{d}B_t & \text{in } (0,\infty), \\ X_0 = 0, \end{cases}$$

had a weak solution but no strong solution. Deduce that uniqueness in law holds for equation (1.2) but that pathwise uniqueness does not hold.

(viii) Let $\alpha \in (0, 1/2)$, let $\sigma \colon \mathbb{R} \to \mathbb{R}$ be defined by

$$\sigma(x) = |x|^{\alpha} \wedge 1,$$

and let $(B_t)_{t\in[0,\infty)}$ be a standard one-dimensional Brownian motion. Show that the map

$$t \in [0,\infty) \to \int_0^t \sigma^{-2}(B_s) \,\mathrm{d}s$$

is almost surely finite. Let $(\tau_t)_{t \in [0,\infty)}$ denote the associated time-changes

$$\tau_t = \inf\left\{s \in [0,\infty) \colon \int_0^s \sigma^{-2}(B_r) \,\mathrm{d}r = t\right\}.$$

Show that $X_t = B_{\tau_t}$ and $X_t = 0$ are two solutions of the equation

$$\begin{cases} \mathrm{d}X_t = \sigma(X_t) \,\mathrm{d}B_t & \text{in } (0,\infty), \\ X_0 = 0. \end{cases}$$

Conclude that uniqueness in law does not hold for this equation, despite the fact that the second of these solutions is a strong solution.