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1. Sheet 4

(i) Let (Mt)t∈[0,∞) be a continuous local martingale that vanishes at zero. Let (E(M)t)t∈[0,∞)

denote the stochastic exponential.
(a) Show that (E(M)t)t∈[0,∞) is a nonnegative continuous local martingale.
(b) Show that (E(M)t)t∈[0,∞) is a supermartingale with E[E(M)t)] ≤ 1 for every t ∈ [0,∞).
(c) Show that (E(M)t)t∈[0,∞) is a continuous martingale if and only if E[E(M)t)] = 1 for every

t ∈ [0,∞).

(ii) The following is Kazamaki’s criterion. Let (Lt)t∈[0,∞) be a continuous local martingale. Prove

that if (exp(12Lt))t∈[0,∞) is a uniformly integrable submartingale, then the stochastic expo-
nential (E(L)t)t∈[0,∞) is a uniformly integrable martingale.

Hint: Show for every α ∈ (0, 1) that

E(αLt) = (E(L)t)
α2

(Zα
t )

1−α2

,

for Zα
t = exp( α

1+α
Lt). Use Hölder’s inequality, Question (i), and the optional stopping theorem

to prove that, for every stopping time T , for every A ∈ F ,

E [E(αLT )1A] ≤ E [Zα
T1A]

1−α2

.

Conclude using the assumption and α ∈ (0, 1) that (Zα
t )t∈[0,∞) is a uniformly integrable

submartingale, and therefore that the familly

{E(αLT )) : T is a stopping time } is a uniformly integrable,

and therefore that (E(αLt))t∈[0,∞) is a uniformly integrable martingale. Hence, for every
α ∈ (0, 1),

1 = E[E(αL∞)] ≤ E [Zα
∞]1−α2

.

Use the assumption and the dominated convergence theorem to pass to the limit α → 1 to
conclude that

E[E(L)∞] = 1,

and therefore using Question (i) conclude that (E(L)t)t∈[0,∞) is a martingale.

(iii) The following is Novikov’s criterion. Prove that if (Lt)t∈[0,∞) is a continuous local martingale
which satisfies

E

[

exp

(

1

2
〈L〉∞

)]

< ∞,

then (E(L))t∈[0,∞) is a uniformly integrable martingale.
(Hint: Show that Novikov’s criterion implies Kazamaki’s criterion. First use the fact that

the exponential integrability implies for every p ∈ (0,∞) that

E
[

〈L〉
p

2

∞

]

< ∞.
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Use this fact and the Burkholder-Davis-Gundy inequalities to prove that (Lt)t∈[0,∞) is a uni-
formly integrable martingale. Then use the equality

exp

(

1

2
L∞

)

= E(L)
1

2

∞ exp

(

1

4
〈L〉t

)

,

Hölder’s inequality, Question (i), and the assumptions to conclude that

E

[

exp

(

1

2
L∞

)]

< ∞.

Use this fact to conclude that (exp(12Lt))t∈[0,∞) is a uniformly integrable submartingale, and
then apply Kazamaki’s criterion.

(iv) Let (Bt)t∈[0,∞) be a standard one-dimensional Brownian motion defined on a probability
space (Ω,F ,P) with respect to a filtration (Ft)t∈[0,∞). Suppose that b : R → R is a bounded,
measurable function. Define measures {QT }T∈(0,∞) on {(Ω,FT ,P)}T∈(0,∞) which satisfy the
following three properties.
(a) The measures are compatible in the sense that QT1

= QT2
on FT1

for every T1 ≤ T2 ∈
[0,∞).

(b) For every T ∈ [0,∞) the measure QT is mutually absolutely continuous with respect to P

on (Ω,FT ,P).

(c) The process (B̃t)t∈[0,∞) defined by

B̃t = Bt −

∫ t

0
b(Bs) dBs,

is for every T ∈ (0,∞) a standard Brownian motion with respect to (QT ,FT ) on [0, T ].

Prove that for every T ∈ (0,∞) the pair (Bt, B̃t)t∈[0,T ] is a weak solution to the equation

(1.1)

{

dBt = b(Bt) dt+ dB̃t in (0, T ),

B0 = 0,

with respect to (QT ,FT ). Deduce that uniqueness in law holds for (1.1).

(v) (Skorokhod’s Lemma) Let y : [0,∞) → R be a real-valued function that satisfies y(0) ≥ 0.
Prove that there exist unique functions a, z : [0,∞) → R which satisfy the following three
properties.
(a) We have the decomposition

z = y + a.

(b) The function z is nonnegative
z ≥ 0.

(c) The function a is increasing, continuous, and vanishes at zero and the corresponding
Riemann-Stieltjes measure da is supported on the set {s : z(s) = 0}.

Furthermore, the function a is given by

a(t) =

[

sup
s∈[0,t]

(−y(s))

]

∨ 0.

(vi) Let (Bt)t∈[0,∞) be a standard one-dimensional Brownian motion. Define the process (Xt)t∈[0,∞)

by

Xt =

∫ t

0
sgn(Bs) dBs.
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(a) Show that (Xt)t∈[0,∞) is a standard Brownian motion with respect to the filtration

F
|B|
t = σ(|Bs| : s ∈ [0, t]).

Furthermore, observe that F
|B|
t ( FB

t .
(b) Let (L0

t )t∈[0,∞) denote the local time of (Bt)t∈[0,∞) at zero. Prove that

L0
t = sup

s∈[0,t]
(−Xs) .

(c) Let (St)t∈[0,∞) be defined by St = sups∈[0,t] |Bs|. Show that the two-dimensional processes

(St −Bt, St) and (|Bt| , L
0
t ) have the same law.

(d) For every a ∈ R let (La
t )t∈[0,∞) denote the local time of (Bt)t∈[0,∞) at a ∈ R. Deduce for

every a ∈ R that P[La
∞ = ∞] = 1.

(vii) Let (Bt)t∈[0,∞) be a standard one-dimensional Brownian motion. Prove that the stochastic
differential equation

(1.2)

{

dXt = sgn(Xt) dBt in (0,∞),

X0 = 0,

had a weak solution but no strong solution. Deduce that uniqueness in law holds for equation
(1.2) but that pathwise uniqueness does not hold.

(viii) Let α ∈ (0, 1/2), let σ : R → R be defined by

σ(x) = |x|α ∧ 1,

and let (Bt)t∈[0,∞) be a standard one-dimensional Brownian motion. Show that the map

t ∈ [0,∞) →

∫ t

0
σ−2(Bs) ds,

is almost surely finite. Let (τt)t∈[0,∞) denote the associated time-changes

τt = inf

{

s ∈ [0,∞) :

∫ s

0
σ−2(Br) dr = t

}

.

Show that Xt = Bτt and Xt = 0 are two solutions of the equation
{

dXt = σ(Xt) dBt in (0,∞),

X0 = 0.

Conclude that uniqueness in law does not hold for this equation, despite the fact that the
second of these solutions is a strong solution.


