
Problem sheet 2

Joe Keir

October 10, 2019

All questions use natural units, where Newton’s constant G and the speed of light c are both equal
to 1.

Questions marked with a star * are optional extension questions which go beyond the scope of the
course. They will not be discussed in class unless all other questions have already been covered. You are
advised to only attempt these questions if you have already completed the other questions on the sheet.

Questions/comments/correction to Joseph.Keir@maths.ox.ac.uk

1. The sphere as a manifold

Show explicitly that the sphere S
2 = {x ∈ R

3 : |x| = 1} is a smooth manifold. You will need to use
at least two coordinate patches!

2. Practice with tensors

Explain why each of the following equations is not a well-formed tensor equation.

a) Xµ = Yµ

b) Xµ + Y ν = 0

c) Tµν − Y µ = 0

d) Xµ = 1

e) XµνρYµνZ
ν = 0

f) φ = (XµYµ)(A
µBµ)

g) Rµµ = 3

3. Coordinate induced vectors, covectors and bases

Suppose that U is some coordinate patch on a manifold, with φU the associated coordinate chart,
and let p ∈ U . Define the curves γa, through the point p, where

γ̃a := φU ◦ γa

is the curve on R
n such that xb = constant, for all b 6= a. Parametrise this curve by xa.

a) Show that the coordinate induced vector fields {∂a}, where ∂a is the tangent vector to the curve
γa at the point p, span the tangent space at p, Tp(M).
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b) Likewise, show that the coordinate induced covector fields {dxa} span the cotangent space at p,
T ∗
p (M).

c) Now suppose that we choose to work in new coordinates, wherein only the last coordinate differs
from the coordinate previously used. That is, we use coordinates {ya}, where

y0 = x0 , y1 = x1 . . . yn−1 = xn−1 , yn = f(x0, . . . , xn)

i) Writing ∂′
a for the vector constructed from the coordinates ya in the same way that the vector ∂a

was constructed from the coordinates xa, and assuming that ∂f
∂xn

∣

∣

p
6= 0, show that

∂′
a = ∂a −

∂f

∂xa

∣

∣

∣

∣

xb,b 6=a

(

∂f

∂xn

)−1

∂n a = 0, . . . , n− 1

∂′
n =

(

∂f

∂xn

)−1

∂n

where everything is evaluated at the point p.

ii) Show also that

dya = dxa a = 0, . . . , n− 1

dyn =
∂f

∂xa
dxa

This helps us to make sense of the names covariant and contravariant : under a change of coordi-
nates, covectors like dya vary ‘with’ the coordinates (hence co-variant), while vectors vary ‘against ’ the
coordinates (hence contra-variant).

4. The Hessian

Let f be some smooth function on a manifold. Then, given vector fields X and Y , we define

Hf (X,Y ) :=
1

2
X(Y (f)) +

1

2
Y (X(f))

Let p be a point in the manifold.

a) Under what conditions on the function f does Hf define a (0, 2) tensor at p?

b) In the case where Hf does define a tensor, show that, in local coordinates xa, this tensor is the
Hessian of f , i.e.

(Hf )ab =
∂2f

∂xa∂xb

5. Outer/tensor products

Let Tµν be a (2, 0) tensor at some point p in a manifold M.

a) Show that it is always possible to write

Tµν =
∑

(A)

X
µ

(A)Y
ν
(A)
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for some vector fields X(A) and Y(A).

Bonus: show that, if T is a tensor on an n dimensional manifold, then one actually only needs to
sum over at most n pairs of vector fields. In other words,

Tµν =
n
∑

(A)=1

X
µ

(A)Y
ν
(A)

b) Some (0, 2) tensors can be written in terms of a single pair of vectors, i.e.

Tµν = XµY ν

Working in some local coordinates xa, write down a condition on the components T ab which is sufficient
to guarantee that Tµν cannot be written in terms of a single pair of vector fields in this way.

c) Give a coordinate-independent condition on the tensor Tµν that is both necessary and sufficient
for there to exist vector fields X and Y such that Tµν = XµY ν .

Hint: it may help to examine the properties of the linear map

T̃ : T ∗
p (M) → T ∗

p (M)

η 7→ T (η, ·)

where T (η, ·) is the vector such that the action of an arbitrary covector µ is given by µ (T (η, ·)) = T (η, µ).

6. The Christoffel symbols of Minkowski space in various coordinate systems

Recall the expression for the Christoffel symbols of the Levi-Civita connection:

Γa
bc =

1

2
(g−1)ad (∂bgcd + ∂cgbd − ∂dgbc)

a) Show that, in the usual rectangular coordinates, the Christoffel symbols of the Minkowski metric
vanish.

b) In cylindrical coordinates (t, ρ, φ, z) show that

i) the Minkowski metric is given by

g = −dt2 + dρ2 + ρ2dφ2 + dz2

ii) the nonzero Christoffel symbols are

Γρ
φφ = −ρ

Γφ
ρφ = ρ−1

Γφ
φρ = ρ−1

c) In spherical polar coordinates (t, r, θ, φ), show that

i) the Minkowski metric is given by

g = −dt2 + dr2 + r2
(

dθ2 + sin2 θdφ2
)
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ii) the nonzero Christoffel symbols are

Γr
θθ = −r

Γr
φφ = −r sin2 θ

Γθ
rθ = Γθ

θr = r−1

Γθ
φφ = − sin θ cos θ

Γφ
rφ = Γφ

φr = r−1

Γφ
θφ = Γφ

φθ = cot θ

7. Covariant derivatives and geodesics

Suppose that the vector Y is parallel transported along an affinely parametrised geodesic with tangent
vector X.

a) Let s be the affine parameter along the geodesic. Show that the components of Y satisfy the linear
differential equation

d

ds
Y a +

(

Γa
bcX

b
)

Y c = 0

b) Show that g(X,X), g(X,Y ) and g(Y, Y ) are all constant along the geodesic.

c) Suppose the vector Z is also parallel transported along the geodesic. Show that g(Y,Z) is constant
along the geodesic.

d) Now let K be a covector field satisfying the equation

∇µKν +∇νKµ = 0

such a covector field is called a Killing covector field. Show that K(X) is constant along the geodesic
(even if K is not parallel transported!).

8. The exterior derivative of a covector field

a) Suppose that we are working in local coordinates xa. Recall that, given two vector fields X, Y ,
their commutator is defined as the vector field with components

[X,Y ]a = Xb ∂Y
a

∂xb
− Y b ∂X

a

∂xb

Suppose that we change to different coordinates ya
′

= ya
′

(xa). Show that the components of [X,Y ] in
this new coordinate system are given by

[X,Y ]a
′

= Xb′ ∂Y
a′

∂yb
′
− Y b′ ∂X

a′

∂yb
′

Hence this expression transforms as a vector field, and consequently the vector field [X,Y ] can be defined
without reference to any specific local coordinates.

b) Let η be a covector field. The exterior derivative of η is defined as

dη(X,Y ) = X (η(Y ))− Y (η(X))− η ([X,Y ])

where X and Y are any two vector fields.

i) Show that dη is a (0, 2) tensor field.
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ii) In terms of local coordinates, show that the components of dη are given by

(dη)ab = ∂aηb − ∂bηa

so these kinds of tensor fields are antisymmetric. Totally antisymmetric (0, 2) tensor fields are called
two-forms (even if they cannot be written as dη for some covector η). Covector fields themselves are
sometimes called one-forms, and higher rank, totally antisymmetric covariant tensor fields are called
p-forms (where p is the rank).

iii) This definition has not made use of a connection or even a metric. However, if a metric is available
to us, show also that

(dη)ab = ∇aηb −∇bηa

iv) Suppose that η = df for some smooth function f . Show that, in this case, dη = 0.

c) Recall that covariant tensors are defined as multilinear maps from vectors to the real line. The
restriction of a covariant tensor to some submanifold (that is, to some hypersurface or lower dimensional
surface, like a line) is simply the restriction of this multilinear map to vector fields which are tangent
to this surface – that is, to vectors which are the tangent vectors to curves which lie entirely within the
submanifold. In practice it is often simpler to use coordinates, then the restriction of the covector

η = η0dx
0 + η1dx

1

to the surface x0 = constant is simply

η
∣

∣

x0=constant
= η1dx

1

Suppose that we want to integrate the two-form dη over some two-dimensional surface Σ. We work
in local coordinates xa, which we chose so that the surface Σ is given by

Σ =
{

p ∈ M : x0(p) ∈ [0, 1] , x1(p) ∈ [0, 1] , xa(p) = 0 for a > 1
}

In this case, the integral of dη over Σ is defined as
∫

Σ

dη =

∫

Σ

dη
∣

∣

Σ
=

∫

Σ

(

dη
∣

∣

Σ

)

01
dx0dx1

Note that this definition requires a choice of orientation for the surface Σ: we are saying that (x0, x1) is
a ‘right-handed’ coordinate system on Σ.

ii) Show that, if we had made the other choice, so that (x1, x0) (in that order) was defined as
‘right-handed’, then the integral would acquire a minus sign.

ii) Suppose that we change coordinates on Σ, from (x0, x1) to (y0, y1). Show that, in these new
coordinates, the integrand is

|J |
(

dη
∣

∣

Σ

)

01

where |J | is the determinant of the Jacobian matrix associated with the change of coordinates, and
(

dη
∣

∣

Σ

)

01
is the (0, 1)-component of the tensor dη

∣

∣

Σ
with respect to the (x0, x1) coordinate system.

(Note the relationship between this formula and the usual expression for the change of an integrand when
changing variables in multivariate calculus!)

iii) Prove the following form of Stokes’ theorem:

∫

Σ

dη
∣

∣

Σ
=

∫

∂Σ

η
∣

∣

∂Σ

which can be written even more compactly as
∫

Σ

dη =

∫

∂Σ

η

(All of this can be generalised to higher rank forms – and higher dimensional surfaces – as well as to
surfaces which are not “square”. This forms the basis of the theory of integration on manifolds.)
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