
Problem sheet 4

Joe Keir

November 9, 2019

All questions use natural units, where Newton’s constant G and the speed of light c are both equal
to 1.

Questions marked with a star * are optional extension questions which go beyond the scope of the
course. They will not be discussed in class unless all other questions have already been covered. You are
advised to only attempt these questions if you have already completed the other questions on the sheet.

Questions/comments/correction to Joseph.Keir@maths.ox.ac.uk

1. Eddington-Finkelstein coordinates and the event horizon.

a) Write down the Schwarzschild metric in ingoing Eddington-Finkelstein coordinates. Also write
down the inverse metric, and explain why these coordinates allow us to deal with the region r < 2M .

b) Consider a null geodesic travelling in the Schwarzschild spacetime, parametrised by an affine
parameter s. Working in ingoing Eddington-Finkelstein coordinates, show that:

i) If θ = π
2 initially, and dθ

ds = 0 initially, then θ = π
2 forever.

ii) There is a conserved quantity due to the fact that the Lagrangian is independent of the coordinate
v. Write down an expression for this quantity.

iii) There is a conserved quantity due to the fact that the Lagrangian is independent of the coordinate
φ. Write down an expression for this quantity.

iv) Using the fact that the tangent to this geodesic is null, write down an expression for dr
ds in terms

of the coordinate r and the conserved quantities derived above, assuming that the geodesic lies
entirely in the equatorial plane θ = π

2 .

c) Show, using Eddington-Finkelstein coordinates, that the curve (v, r, θ, φ) = (v(s), 2M, θ0, φ0) (for
constants θ0 and φ0) is a null geodesic. How does the coordinate v along this geodesic relate to the affine
parameter s? (Hint: look at the Euler-Lagrange equation associated with varying r).

2. Inevitable doom inside a black hole

Bob is falling into a black hole and, unfortunately for them, they have just passed the event horizon
at r = 2M .

a) Write down (in Schwarzschild coordinates) the metric in the interior of the Schwarzschild black
hole. Which of the coordinates corresponds to time?

b) Show that, along any timelike curve (not necessarily a geodesic), the function r decreases as proper
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time increases, with the following bound on the rate:

dr

dτ
≤ −

√

2M

r
− 1

c) Hence show that the maximum proper time along the curve between crossing the event horizon
and reaching the singularity at r = 0 is

τ = Mπ

Hint: you may find the substitution u =
√

1− r
2M helpful.

From Bob’s point of view, is it better to fall into a large black hole or a small one?

3. Isotropic coordinates.

Beginning in the usual Schwarzschild coordinates (t, r, θ, φ), define a function ρ by

r := ρ

(

1 +
M

2ρ

)2

Now define functions x, y and z as

x := ρ sin θ cosφ

y := ρ sin θ sin sin

z := ρ cos θ

a) Write down the Schwarzschild metric in isotropic coordinates (t, x, y, z) (Hint: you might find it
helpful to first write down the metric in the coordinates (t, ρ, θ, φ)). What is the range of the coordinates
ρ? What happens to the metric at the (inner) boundary of this coordinate range?

b) The light cone is a structure in the tangent space at every point in a Lorentzian manifold (M, g),
defined as follows:

Tp(M) ⊃ Cp(M) =
{

X ∈ Tp(M)
∣

∣ g(X,X) = 0
}

Show that, working in isotropic coordinates, the light cones are isotropic (hence the name). In other
words, show that there is a scalar field f : M → R such that

Cp(M) =
{

X ∈ Tp(M)
∣

∣ (X0)2 = f(p)
(

(X1)2 + (X2)2 + (X3)2
)}

so that, from the point of view of these coordinates, the light cones look the same in every spatial
direction at every point.

c) Now concentrate on the spatial part of the metric, i.e. drop the part of the metric that is propor-
tional to dt2. This defines a Riemannian metric on the surfaces of constant t (sometimes it is said that
the Lorentzian metric g induces a Riemannian metric on the hypersurfaces of constant t). Let’s call this
spatial part of the metric h.

The angle θ between two vectors X and Y on a Riemannian manifold (both lying in the same tangent
space, i.e. at a single point on the Riemannian manifold) is defined by the formula

cos θ =
h(X,Y )

√

h(X,X)h(Y, Y )

Show that there is a map from a surface of constant t in Schwarzschild to R
3 which preserves the

angles between all vectors (the angles between vectors in R
3 being defined in the standard way). A map

of this type is called a conformal map or conformal isometry.
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4. Stability of the Einstein static universe

Write down the Friedman equations with k = 1 (a closed universe), Λ 6= 0 and where the matter
content is given by dust (p = 0).

a) Show that there is a single value of the scale factor a = a0 which leads to a static universe
(ȧ = ä = 0). Give this value of a in terms of the cosmological constant. Give the matter density ρ = ρ0
needed to support this universe (also in terms of Λ).

b) Now consider a small perturbation around this solution: set

a = a0 + ǫa1(τ)

ρ = ρ0 + ǫρ1(τ)

and expand the Friedmann equations to leading order in ǫ. Show that the general solutions to these
equations have the magnitudes of a1 and ρ1 growing exponentially quickly, and so the Einstein static
universe is unstable.

5. Conformal time and worldlines in an FLRW spacetime

a) Define a coordinate η by
dη = a(τ)dτ

Write down the general form of the Robertson-Walker metric in coordinates (η, r, θ, φ). (The coordinate
η is called the conformal time).

b) Now consider the closed case (k = 1). Define yet another coordinate, χ by

sinχ = r

and write down the Robertson-Walker metric in the coordinates (η, χ, θ, φ).

i) Comment on the spatial part of the metric.

ii) Show that there are null geodesics lying entirely within the “equatorial hyperplane” χ = θ = π
2 .

Show that, along such a geodesic,
dφ

dη
= ±1

c) Suppose that this describes a radiation dominated universe. Write down the equation of state in
this case, and show that the matter density is related to the scale factor in this case by

ρ = ρ0a
−4

where ρ0 is a constant.

d) Use the Friedmann equations to show that, if the cosmological constant Λ vanishes (and in the
radiation dominated case with k = 1) the scale factor obeys the equation

3

(

da

dη

)2

+ a2 = 8πρ0

and solve this equation with the initial data a = 0 when η = 0. What value does the conformal time
take when the “big crunch” occurs?

e) What proportion of the circumference of the universe can a photon (moving on the equatorial
hyperplane) traverse before the end of time?

3



6. De Sitter space and cosmological horizons

De Sitter space can be defined as a submanifold of 5-dimensional Minkowski space M
5, with the

Minkowski metric
g5 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2

Consider the hyperboloid −(x0)2 + (x1)2 + (x2)2 + (x3)2 + (x4)2 = 3
Λ , where Λ > 0. De Sitter space

consists of this hyperboloid, equipped with the metric found by restricting the five dimensional ambient
metric g5 to the hyperboloid (in other words, the metric on De Sitter space is the metric induced by the
ambient metric g5).

a) Define the coordinates (τ, ρ, r, θ, φ) on M
5 as follows:

x0 = ρ

(

√

3

Λ
sinh

(

√

Λ

3
τ

)

+
1

2

√

Λ

3
r2e

√
Λ

3
τ

)

x1 = ρ

(

√

3

Λ
cosh

(

√

Λ

3
τ

)

− 1

2

√

Λ

3
r2e

√
Λ

3
τ

)

x2 = ρe
√

Λ

3
τr sin θ cosφ

x3 = ρe
√

Λ

3
τr sin θ sinφ

x4 = ρe
√

Λ

3
τr cos θ

i) Write out the 5-dimensional Minkowski metric in these coordinates.

ii) Show that (a subset of) the hyperboloid −(x0)2 + (x1)2 + (x2)2 + (x3)2 + (x4)2 = 3
Λ is given by

ρ = 1 in the coordinates above. Hence write down the induced metric on the hyperboloid (i.e. set ρ = 1
and drop all terms involving dρ).

iii) Show that this metric is of the standard Robertson-Walker form, and identify the scale factor
a(τ). Is this metric of flat, open or closed form?

b) Many cosmological models posses a particle horizon or cosmological horizon. Unlike black hole
event horizons, a cosmological horizon is personal – different observers will label different surfaces as
their own individual cosmological horizon.

Let γ(τ) be a worldline of an observer, i.e. a timelike curve through De Sitter space. The particle
horizon at time τ is the boundary of the region from which signals can reach the observer at τ , so, locally,
it looks like the past light cone of the point γ(τ) (see figure 1).

i) Define a conformal time coordinate η by

dτ = e
√

Λ

3
τdη

and write down the metric in (η, r, θ, φ) coordinates.

ii) Consider an observer moving along the worldline r = 0, i.e. an observer who stays at the (spatial)
origin. By considering the form of the metric in the coordinates (η, r, θ, φ), show that the cosmological
horizon at the conformal time η = η0 (in the region covered by these coordinates) is given by the surface
r = η0.

iii) Now express η in terms of τ , choosing these coordinates so that η = 0 when τ = 0. Write the
position of the cosmological horizon as a function of τ . What happens as τ → 0? Show that there
are some spacetime events that the observer will never see – these events are said to lie outside this
observer’s final horizon.

This is actually the final fate of the universe, according to the best current cosmological models. So,
even if you were immortal, you still wouldn’t be able to see everything in the universe!
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Figure 1: An observer moves along the blue worldline in a cosmological spacetime. Two particle horizons
are shown: the coordinates are such that the light rays travel at a 45 degree angle.
Now imagine that we choose coordinates such that the entire, infinite future of the blue worldline is
compressed so that it fits into this finite diagram. This means that the dotted part of the worldline is
traversed in an infinite proper time. We can consider the limit of the particle horizons as the proper
time τ → ∞ – this is called the final horizon.

*7. The Schwarzschild metric using frame fields

This question will guide you through an alternative approach to showing that the Schwarzschild
metric solves the Einstein equations. This approach is based on the idea of a frame field, which provides
an alternative to coordinates as a basic object for manipulating expressions in general relativity.

Using Schwarzschild coordinates (t, r, θ, φ), define the one-forms (or covectors)

f0 :=

(

1− 2M

r

)
1

2

dt

f1 :=

(

1− 2M

r

)

−

1

2

dr

f2 := rdθ

f3 := r sin θdφ

We’ll use capitol Latin letters A,B,C . . . to label these one-forms, i.e. we write them as ωA.

a) Find the dual basis of vector fields eA, where fA(eB) = δAB . Show also that

(eA)
♯ = mABf

B

b) Show that the metric is given by
g = mABf

AfB

where mAB = diag(−1, 1, 1, 1). Likewise, show that the inverse metric is given by

g−1 = (m−1)ABeAeB

Before outlining the next part of this approach, we need to be familiar with two-forms. These objects
were outlined in question 8 of problem sheet 2, but, to summarize,
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• A two-form is an antisymmetric rank (0, 2) tensor field.

• Given two one-forms (i.e. covectors) η, µ, we can form a two-form η∧µ, using the “wedge product”.
This two-form acts on a pair of vectors X and Y as follows:

η ∧ µ(X,Y ) = η(X)µ(Y )− µ(X)η(Y )

or if you prefer components
(η ∧ µ)ab = ηaµb − µaηb

• Given coordinates xa, a basis of two forms is given by the tensor fields dxa ∧ dxb with a > b.

• Given a one-form (or covector field) η, we can define the two-form dη. In terms of the basis given
above, this can be written as follows:

η = ηadx
a

dη =
∂ηa

∂xb
dxb ∧ dxa

Alternatively, in coordinate-independent notation, we have

dη(X,Y ) = X (η(Y ))− Y (η(X))− η ([X,Y ])

where X and Y are vector fields, and [X,Y ] is their commutator.

The next step in our process is to find the connection coefficients ωab (also known as Ricci rotation
coefficients or connection one-forms). These can be viewed as the components of an antisymmetric matrix
of one-forms, or equivalently as a set of 6 one-forms (or covectors) labelled by a pair of antisymmetric
indices.

The connection coefficients are defined by the relationship

mABdf
B = −ωAB ∧ fB (1)

We first want to show that this equation has a unique solution.

c) Suppose that there is another set of one forms (labelled by antisymmetric indices) ω̄AB satisfying

mABdf
B = −ω̄AB ∧ fB

Writing ωAB − ω̄AB = ηABCf
C , show that

i) ηABC = −ηBAC

ii) ηABC = ηACB

iii) Hence conclude that ηABC = 0, so ω = ω̄ and the solution to equation (1) is unique.

Next we want to actually find the connection coefficients. We claim that they are given by the formula

ωAB = g(∇CeA, eB)f
C = g(eµC∇µeA, eB)f

C

To show this, we can act with mABdf
B and with −ωAB ∧ fB on a basis. Before we do that, we can do

the following exercise:

d) Use the fact that g(eA, eB) = mAB to show that

g(∇CeA, eB) = −g(∇CeB , eA)

and hence that ωAB = −ωAB .
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Now, returning to the claim that ωAB = g(∇CeA, eB)f
C , we can compute

mABdf
B(eC , eD) = mAB

(

eC(f
B(eD))− eD(fB(eC))− fB([eC , eD])

)

= mAB

(

eC(δ
D
B )− eD(δBC )− fB([eC , eD])

)

= −mABf
B([eC , eD])

= mABf
B (∇DeC −∇CeD)

= g (eA,∇DeC −∇CeD)

On the other hand, we can compute

−ωAB ∧ fB(eC , eD) = −g(∇EeA, eB)f
E ∧ fB(eC , eD)

= −g(∇EeA, eB)(δ
E
C δBD − δEDδBC )

= g(∇DeA, eC)− g(∇CeA, eD)

= −g(∇DeC , eA) + g(∇CeD, eA)

where in the last line we have used the antisymmetry established in part d).

e) Compute the connection coefficients associated to the orthonormal frame eA in Schwarzschild.
There are several ways to do this:

e) Approach 1

We can try the direct approach, using the formula ωAB = g(∇CeA, eB)f
C . We can compute the

quantity g(∇CeA, eB) without computing any Christoffel symbols using the following trick:

g(∇CeA, eB) = g([eC , eA], eB) + g(∇AeC , eB)

= g([eC , eA], eB)− g(∇AeB , eC)

= g([eC , eA], eB)− g([eA, eB ], eC)− g(∇BeA, eC)

= g([eC , eA], eB)− g([eA, eB ], eC) + g(∇BeC , eA)

= g([eC , eA], eB)− g([eA, eB ], eC) + g([eB , eC ], eA) + g(∇CeB , eA)

= g([eC , eA], eB)− g([eA, eB ], eC) + g([eB , eC ], eA)− g(∇CeA, eB)

⇒ g(∇CeA, eB) =
1

2
(g([eC , eA], eB)− g([eA, eB ], eC) + g([eB , eC ], eA))

This allows us to compute g(∇CeA, eB) without computing Christoffel symbols – instead, we just need
to compute the commutators [eA, eB ].

e) Approach 2

The alternative to the direct approach is to simply write out the formula

mABdf
B = −ωAB ∧ fB

The left hand side is easy to compute. Then we just look for a matrix of one-forms ωAB satisfying the
equation above. If we can find such a matrix, then we know that it is unique, so try to guess the answer!
In practice this is often a much quicker approach.

Next we want to relate the connection coefficients to the curvature. We claim that the components
of the Riemann tensor are

RABCDfC ∧ fD = dωAB − ωAC ∧ ωC
B
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To prove this claim, we can act with dωAB on a basis:

dωAB(eC , eD) = eC(ωAB(eD))− eD(ωAB(eC))− ωAB([eC , eD])

= eC (g(∇DeA, eB))− eD (g(∇CeA, eB))− g(∇[eC ,eD ]eA, eB)

= g(∇C∇DeA, eB)− g(∇D∇CeA, eB)− g(∇[eC ,eD ]eA, eB) + g(∇DeA,∇CeB)

− g(∇CeA,∇DeB)

= RABCD + g(∇DeA,∇CeB)− g(∇CeA,∇DeB)

= RABCD + g(∇DeA, eE)(m
−1)EF g(∇CeB , eF )− g(∇CeA, eE)(m

−1)EF g(∇DeB , eF )

= RABCD + (m−1)EF (ωAE)D(ωBF )C − (m−1)EF (ωAE)C(ωBF )D

= RABCD + (m−1)EF (ωAE ∧ ωBF )CD

So in other words, if we define the curvature two-form ΩAB (labelled by a pair of antisymmetric matrices)
as

ΩAB = dωAB − (m−1)CDωAC ∧ ωDB = dωAB − ωAC ∧ ωC
B

then we have
RABCD = (ΩAB)CD = ΩAB(eC , eD)

f) Now, compute the curvature two-form ΩAB for the Schwarzschild metric. Note how much easier
it is to compute dωAB and ωAC ∧ ωC

B compared with computing the curvature using coordinates and
Christoffel symbols!

g) Now that the components of the Riemann tensor RABCD have been computed in an orthonormal
frame, we can easily compute the components of the Ricci tensor: it is

RAB = (m−1)CDRACBD = −RA0B0 +RA1B1 +RA2B2 +RA3B3

Use this calculation to show that the Schwarzschild metric satisfies the Einstein equations.
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