C7.5: General Relativity I
 Problem Sheet 3

Please submit solutions in the collection boxes in the basement of the Mathematical Institute no later than Tuesday 20th November, 4pm. Corrections to ashmore@maths.ox.ac.uk.

1. Independent components of the Riemann tensor

The Riemann tensor $R_{a b}{ }^{c}{ }_{d}$ associated to a torsion-free $\left(\Gamma^{a}{ }_{[b c]}=0\right)$ covariant derivative ∇_{a} obeys the following algebraic identities:

1. $R_{a b}{ }^{c}{ }_{d}=-R_{b a}{ }^{c}{ }_{d}$
2. $\left.R_{[a b}{ }^{c} d\right]=0$

What is the additional algebraic identity obeyed when ∇_{a} is the Levi-Civita covariant derivative compatible with a $g_{a b}$? In this case, show that the Riemann tensor in four dimensions has 20 independent components. How many independent components does it have it D dimensions?

2. Riemann tensor in two dimensions

1. Show that in two dimensions, the Riemann tensor must be of the form

$$
R_{a b c d}=\frac{1}{2} R\left(g_{a c} g_{b d}-g_{a d} g_{b c}\right)
$$

where R is the Ricci scalar. Hint: express the Ricci scalar R in terms of the one independent component of the Riemann tensor, say R_{1212}.
2. Show that Einstein tensor $G_{a b}=R_{a b}-\frac{1}{2} g_{a b} R$ vanishes automatically in two dimensions.
3. Consider the two-dimensional de Sitter metric

$$
\mathrm{d} s^{2}=-\mathrm{d} u^{2}+\cosh ^{2} u \mathrm{~d} \varphi^{2}
$$

where $-\infty<u<\infty$ and $0 \leq \varphi<2 \pi$. Using your results from question 5 of problem sheet 2 , compute the one independent component of the Riemann tensor, say $R_{u \varphi u \varphi}$.
4. Compute the Ricci scalar R for this two-dimensional de Sitter metric and verify that $R_{a b c d}=g_{a c} g_{b d}-g_{a d} g_{b c}$.

3. Newtonian limit of geodesic deviation

The relative acceleration of a one-parameter family of geodesics $x_{t}^{a}(\lambda)=x^{a}(\lambda, t)$ is determined by the geodesic deviation equation

$$
\frac{D^{2} N^{d}}{D \tau^{2}}=R_{a b}{ }^{d}{ }_{c} V^{a} N^{b} V^{c}
$$

where

$$
V^{a}=\frac{\mathrm{d} x^{a}}{\mathrm{~d} \lambda}, \quad N^{b}=\frac{\mathrm{d} x^{b}}{\mathrm{~d} t},
$$

and $D / D \tau=V^{a} \nabla_{a}$ is the covariant derivative in the direction of V^{a}.
In the Newtonian limit, show that this reduces to

$$
\frac{\partial^{2} N^{i}}{\partial t^{2}}=-\sum_{j} \frac{\partial^{2} \phi}{\partial x^{i} \partial x^{j}} N^{j},
$$

where ϕ is the gravitational potential.

4. Schwarzschild solution

Check that the Schwarzschild solution satisfies the vacuum field equations $R_{a b}=0$. You should do this carefully in your own time; it is not necessary to hand this calculation in.

5. Circular orbits

The Lagrangian for affinely parametrised geodesics in the Schwarzschild solution is

$$
\mathcal{L}=-(1-2 M / r) \dot{t}^{2}+(1-2 M / r)^{-1} \dot{r}^{2}+r^{2}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right) .
$$

Show that

$$
E=(1-2 M / r) \dot{t}, \quad J=r^{2} \sin ^{2} \theta \dot{\phi},
$$

are conserved. What symmetries do they correspond to? Explain why the Lagrangian itself is conserved and why $\mathcal{L}=-1$ for time-like geodesics parametrised by proper time. Show that, without loss of generality, you can always restrict to time-like geodesics lying in the equatorial plane, $\theta=\pi / 2$.

Now consider a circular orbit in the equatorial plane at coordinate distance R. Show that this is a time-like geodesic if $R>3 M$ and find the conserved quantities (E, J).

6. Orbital periods

The Schwarzschild metric describing spacetime outside a spherical mass M is given by

$$
\mathrm{d} s^{2}=-(1-2 M / r) \mathrm{d} t^{2}+(1-2 M / r)^{-1} \mathrm{~d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right) .
$$

1. Using conserved quantities and the change of variables $r=1 / u$, find the radius R at which a photon can follow a circular orbit. Hint: use $\mathcal{L}=0$ for a null geodesic to find an
expression for \dot{r}^{2}, then rewrite in terms of $d u / d \phi$.
2. What would a fixed observer at $r=R$ measure as the time period of the photon's orbit?
3. If this fixed observer flashes a signal each time the photon passes, at what interval would a stationary observer at $r \rightarrow \infty$ measure these flashes?
