
What are the ingredients making Deep Learning work:

Data:

I real data lives on a lower dimensional manifold,
I much of the variation we observe are invariance which should

be in the net null space; e.g. translation, rotation, dilation,
I real data is compressible, what is the role of sparsity,

Architecture:

I how does the data inform the type of architecture to be used,
I what are the ingredients of modern deep nets, and why,
I to what, if any degree, are networks robust to adversaries,

Ability to train:

I how to train large numbers of networks parameters, θ,
I methods to train them must be scalable and are not run to

global convergence,
I what are the impacts of choices in the optimisation method,

such as batch size as an implicit regulariser.
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Theories for Deep Learning:

I Expressivity of deep networks and the depth vs. width
tradeoff?

I Convergence properties of stochastic gradient descent and
other alternatives?

I What can we say about a single layer?

I Are there models of data for which we can guarantee
activations are correct?

I What is the topology of the net parameters, θ?

I Are there variants of deep networks that don’t require
learning, easier to analyse?

I Random matrix theory as a model if few network weights are
changed.
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Example of a Feedforward network / multilayer perceptron

A feedforward net is a nonlinear function composed of repeated
affine transformation followed by a nonlinear action:

hi+1 = σj

(
W (i)hi + b(i)

)
for i = 1, . . . ,N − 1

where W (i) ∈ Rni+1×ni and b(i) ∈ Rni+1 and σ(·) is a nonlinear
activation such as ReLU, σ(z) := max(0, z) = z+.
The depth, or number of layers, of this network is N and if N > 1
it is referred to as “deep.”
The input to the net is h1, the output is hN , and hi for
intermediate i = 2, ·,N − 1 are referred to as “hidden” layers.

This Feedforward is an example of a network “architecture.”
https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Architecture/

feedforward.html
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Deep learning requires a deep net, loss function, and data

The network “Weights” W (i) (and shifts b(i)) are learnt to fit a
task for a particular data set; the collection of all network weights
are normally summarised as a variable θ.

A “labeled” data set is a collection of input, x(j) = h1(j), and
desired output y(j), pairs {(x(j), y(j))}mj=1.

The net is trained by minimising a loss function L(x(i), y(i); θ)
summed over all data pairs; that is

min
θ

m∑
i=1

L(x(i), y(i); θ).

and the resulting learned net is, H(·; θ).
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Outline for today: views on expressivity of feedforward nets

I Network architectures are able to approximate any function
(Cybenko (89’) and Hornik (90’)).

I There are functions for which deep networks are able to
construct with polynomially many parameters that require
exponentially many parameters for a shallow network to
approximate. (Telgarsky 15’).

I Deep networks can approximate nonlinear functions on
compact sets to ε uniform accuracy with depth and width
scaling like log(1/ε). (Yarotsky 16’)

I Many recent extensions to give approximation rates, such as
work by Bölcskei et al. (18’), Devore et al. (19’) and many
more...
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Expressivity of deep net: what functions can it approximate

Approximation Theory concerns the ability to approximate
functions from a given representation; see Approximation of
Function (C6.3).

Some of the most well studied examples include approximation of a
function f (x) over x ∈ [−1, 1] with some smoothness, say three
times differentiable, by polynomials of degree at most k or
trigonometric exponentials.

Here our focus is on the ability to approximate functions H(x ; θ)
given by a deep network architecture; for x ∈ Rn. In particular:

I What functions can a deep net approximate arbitrarily well?

I What is the advantage of depth?
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Superposition of sigmoidal functions (Cybenko 891): Pt. 1

Consider the feedforward network with one hidden layer:

input h1 = x ∈ Rn

hidden layer h2 = σ
(
W (1)h1 + b(1)

)
∈ Rm

output H(x , θ) = αTh2 =
∑m

i=1 αiσ(wT
i x + bi )

with σ(t) ∈ [0, 1], say σ(t) = 1/(1 + e−t).

Theorem (Cybenbko 89’)

Let σ(t) be a continuous monotone function with limt→−∞ σ(t) = 0
and limt→∞ σ(t) = 1, then the set of functions of the form
H(x ; θ) =

∑m
i=1 αiσ(wT

i x + bi ) is dense in Cn([0, 1]).

That is, one (or more) layer fully connected nets are sufficient to
approximate any continuous function, provided m is large enough.

1https://link.springer.com/article/10.1007/BF02551274
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Superposition of sigmoidal functions (Cybenko 892): Pt. 2

Theorem (Cybenbko 89’)

Let σ(t) be a continuous monotone function with limt→−∞ σ(t) = 0
and limt→∞ σ(t) = 1, then the set of functions of the form
H(x ; θ) =

∑m
i=1 αiσ(wT

i x + bi ) is dense in Cn([0, 1]).

Proof: Let S be the set of functions that can be expressed by
H(x ; θ) =

∑m
i=1 αiσ(wT

i x + bi ); our aim is to show S is the space
Cn[0, 1] (n-dimensional continuous functions in [0, 1]n). Assume S
is not all of Cn[0, 1] and let S̄ be its closure. Hahn-Banach
Theorem and Riesz Representation Theorem respectively tell us
that there is a bounded linear functional L 6= 0 such that
L(S) = L(S̄) = 0 and L is of the form L(h) =

∫
In
h(x)dµ(x) for

some measure µ(x) and for all h ∈ Cn([0, 1]). In particular
σ(t) ∈ S̄ so L(σ) = 0, but this implies µ(x) = 0 for our choice of
σ(·) which implies S = S̄ ; that is H(x ; θ) is dense in Cn([0, 1]).

2https://link.springer.com/article/10.1007/BF02551274
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Approximation of multilayer feedforward nets (Hornik 903)

Consider the feedforward network with one hidden layer:

input h1 = x ∈ Rn

hidden layer h2 = σ
(
W (1)h1 + b(1)

)
∈ Rm

output H(x , θ) = αTh2 =
∑m

i=1 αiσ(wT
i x + bi )

with σ(t) ∈ [0, 1] non-constant.

Theorem (Hornik 90’)

Let σ(t) be unbounded then H(x ; θ) =
∑m

i=1 αiσ(wT
i x+bi ) is dense

in Lp(µ) for all finite measures µ and 1 ≤ p <∞. Moreover, if σ(t)
is continuous and bounded, then H(x ; θ) =

∑m
i=1 αiσ(wT

i x + bi ) is
dense in Cn([0, 1]).

Much of the result includes showing L(σ) =
∫
In
σ(x)dµ(x) = 0 for

σ(x) in the specified class implies µ(x) = 0.

3https:

//www.sciencedirect.com/science/article/pii/089360809190009T
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Representational benefits of depth (Telgarsky 154) Pt. 1

The results of Cybenko and Hornik show that the network
structure with nonlinear activations is sufficient to generate any
function for our tasks; however, they do not provide function
approximation rates.

Telegarsky (2015) considered a specific construction of a function
from a deep network which requires an shallow network of
exponential depth.
Let σ(x) = ReLu(x) = max(x , 0) and consider the two layer net:

h2(x) = 2σ(x)− 4σ(x − 1/2) =


0 x < 0

2x x ∈ [0, 1/2]
2− 2x x > 1/2

and h3(x) = σ(h2(x)) set to zero the negative portion for x > 1.

4https://arxiv.org/abs/1509.08101
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Representational benefits of depth (Telgarsky 155) Pt. 2

For σ(x) = max(x , 0) let f (x) = h3(x) = σ(2σ(x)− 4σ(x − 1/2))
and iterate this 2-layer network k times to obtain a 2k-layer
network fk(x) = f (f (· · · (f (x) · · · )) with the property that it is
piecewise linear with change in slope at xi = i2−k for
i = 0, 1, . . . , 2k and moreover takes on the values fk(xi ) = 0 for i
even and fk(xi ) = 1 for i odd.

In contrast, a two-layer network with the same σ(x) of the form

σ
(∑m

j=1 αjσ(wjx − bj)
)

requires m = 2k to exactly express fk(x).

The deep network can be thought of as having 6k parameters,
whereas the two-layer network requires 3 · 2k + 1 parameters;
exponentially more.

5https://arxiv.org/abs/1509.08101

Theories of DL Lecture 2 Expresivity of a deep net: why do we need depth

https://arxiv.org/abs/1509.08101


Representational benefits of depth (Telgarsky 156) Pt. 3

A consequence of the aforementioned construction of fk(x) by
Telgarsky can be quantified in terms of classification rates as
functions of depth and width.
Define the function class F (σ;m, `) be the space of functions
composed of ` layer fully connected m width feed forward nets
with nonlinear activation function σ. Let
R(f ) := n−1

∑n
i=1 χ[f (xi ) 6= yi ] count the number of incorrect

labels of the data set {(xi , yi )}ni=1.

Theorem (Telgarsky 15’)

Consider positive integers k, `,m with m ≤ 2(k−3)/`−1, then there
exists a collection of n = 2k points {(xi , yi )}ni=1 with xi ∈ [0, 1] and
yi ∈ {0, 1} such that

Rf ∈F (σ;2,2k)(f ) = 0 and Rg∈F (σ;m,`)(g) ≥ 1

6
.

6https://arxiv.org/abs/1509.08101
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Representational benefits of depth (Yarotsky 167) Pt. 1

Returning to the saw-tooth function composted of
σ(x) = max(x , 0) let f (x) = h3(x) = σ(2σ(x)− 4σ(x − 1/2)) and
iterate this 2-layer network k times to obtain a 2k-layer network
fk(x) = f (f (· · · (f (x) · · · )).
Let hm(x) denote the piecewise linear interpolation of h(x) = x2 at
2m+1 equispaced points, then the difference when increasing m by
one is

hm−1(x)− hm(x) = 2−2mfm(x)

and consequently hm(x) = x −
∑m

s=1 2−2s fs(x).
Consequently, h(x) = x2 can be approximated on [0, 1] to uniform
accuracy ε by a ReLU network having depth and number of
weights proportional to ln(1/ε).

7https://arxiv.org/pdf/1610.01145.pdf
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Representational benefits of depth (Yarotsky 168) Pt. 1

Composition of the same function, self-similarity, is the key
property used to show the results of Telgarsky (15’) and Yarotsky
(16’).

8https://arxiv.org/pdf/1610.01145.pdf
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Representational benefits of depth (Yarotsky 169) Pt. 2

Yarotsky used the ability to approximate x2 as the foundation to
approximate functions in Sobolev spaces. The Sobolev norm

‖f ‖W n,∞([0, 1]d) = max|s|≤nesssuppx∈[0,1]d |Ds f (x)|

is similar to that of functions with n − 1 derivatives that are
Lipschitz continuous Cn−1([0, 1]d) excluding sets of measure zero.
Define the unit ball of functions in W n,∞([0, 1]d) as

Fn,d =
{
f ∈W n,∞([0, 1]d) : ‖f ‖W n,∞([0, 1]d) ≤ 1

}
Theorem (Yarotsky 16’)

For any d , n and ε ∈ (0, 1), there is a ReLU network with depth
at most c(1 + ln(1/ε)) and at most cε−d/n(1 + log(1/ε)) weights
(width O(ε−d/n)), for c a function of d , n, that can approximate
any function from Fd ,n within absolute error ε.

9https://arxiv.org/pdf/1610.01145.pdf
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Function approximation ability of deep networks: ongoing

There is a growing literature on the ability to express high
dimensional data using deep networks, to name a few:

I Approximation space for univariate functions; Daubechies,
DeVore, Foucart, Hanin, and Petrova (19’)10

I That neural networks achieve the same approximation rate as
methods such as wavelets, ridgelets, curvelets, shearlets,
α−molecules; Bölcskei, Grohs, Kutyniok, and Petersen (18’)
11

While these results show that deep networks can achieve
remarkable approximation rates for a diverse set of data, and that
in particular depth is key to their fast approximation rates. Note
however, one needs to be able to train the network parameters to
achieve these rates and avoid overfitting, etc...

10https://arxiv.org/pdf/1905.02199.pdf
11https://www.mins.ee.ethz.ch/pubs/files/deep-approx-18.pdf

Theories of DL Lecture 2 Expresivity of a deep net: why do we need depth

https://arxiv.org/pdf/1905.02199.pdf
https://www.mins.ee.ethz.ch/pubs/files/deep-approx-18.pdf


Summary on expressivity of deep feedforward networks

I Cybenko (89’) showed that a single layer network with
sigmoidal nonlinear activation can approximate any
continuous function with arbitrary accuracy.

I Hornik (90’) extended Cybenko’s results to a much broader
class of nonlinear activations, including ReLu.

I Telgarsky (15’) used a specific deep network to construct a
function and associated classification task to show that there
are functions for which deep networks can exactly classify the
data using polynomially many parameters (weights and bias),
while exact reconstruction with a shallow network would
require exponentially many parameters, otherwise has an O(1)
fraction classification error.

I Yarotsky (17’) showed ε approximation of smooth functions,
such as x2, on bounded domains with width being
proportional to ln(1/ε); extended to Sobolev spaces in Rd .

I Bölcskei et al. (18’), Devore et al. (19’) and many more...
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