
Outline for today

I A geometric view of deep network expresivity, Raghu et al. 16’
and Price et al. 19’.

I Understanding the filter activations on convolutional nets:
The first layers are masks by which the image is compared
against and responses recorded.
The activation at a second layer is a linear combination of
activations from the first layer and can be viewed as building
simple components of an image.
As depth increases the images that maximize an activation
become more like specific images, sometimes referred to as a
“grandmother cell”.

I The first layer of CNNs are similar to wavelets, which is to be
expected and is to be expected due to their near optimality
and helps explain transferability
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Summary expressivity of deep net: approximation theory

I Cybenko (89’) showed that a single layer network with
sigmoidal nonlinear activation can approximate any
continuous function with arbitrary accuracy.

I Hornik (90’) extended Cybenko’s results to a much broader
class of nonlinear activations, including ReLu.

I Telgarsky (15’) used a specific deep network to construct a
function and associated classification task to show that there
are functions for which deep networks can exactly classify the
data using polynomially many parameters (weights and bias),
while exact reconstruction with a shallow network would
require exponentially many parameters, otherwise has an O(1)
fraction classification error.

I Yarotsky (17’) showed ε approximation of smooth functions,
such as x2, on bounded domains with width being
proportional to ln(1/ε); extended to Sobolev spaces in Rd .

I Bölcskei et al. (18’), Devore et al. (19’) and many more...
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Geometric view of data and expressivity: MNIST2

1

Deep nets are learning a vector valued function with prescribed
values on complex, but low intrinsic dimensional, data.

1https://dl.acm.org/citation.cfm?id=1102388
2http://yann.lecun.com/exdb/mnist/
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Geometric generative perspective of expressivity (Price 19’)

Consider passing a simple object, such as a circle, through a
random deep network. Below is the pre-activation output at layers
6 and 12.

One can also use networks to generative data, GANs, and there
one might consider the complexity of the manifold the GAN can
generate as a measure of expressivity.
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Expressivity through path length (Raghu et al. 163)

Consider an (untrained) Gaussian random feedforward network,
that is its weights and bias are drawn i.i.d.
W (`)(i , j) ∼ N (0, σ2w/k) and b(`)(j) ∼ N (0, σ2b), with n layers,
each of width k and “hard tanh” nonlinear activations σ(x) = −1
for x < 1, σ(x) = x for x ∈ [−1, 1], and σ(x) = 1 for x > 1.

Theorem (Raghu et al. 16’)

Consider as input a one dimensional trajectory x(t) with arc-length

`(x(t)) =
∫
t

∥∥∥dx(t)
dt

∥∥∥ dt and let z(n)(t) be the output of the Gaussian

random feedforward network with ReLu activations, then

E
[
`(z(n))

]
`(x(t))

≥ O

((
σw

(σ2w + σ2b)1/4
· k1/2

(k + (σ2w + σ2b)1/2)1/2

)n)
.

The nonlinearity introduced by the path grows exponentially in
depth, n, but only polynomially in width, k.

3https://arxiv.org/pdf/1611.08083.pdf
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Expressivity through path length (Raghu et al. 164)

4https://arxiv.org/pdf/1611.08083.pdf
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Expressivity through path length (Price et al. 19) pt. 1

Let the d-th post-activation layer of a ReLU deep net be z(d), and
the subsequent pre-activation layer as h(d), such that

h(d) = W (d)z(d) + b(d), z(d+1) = φ(h(d)),

where φ(x) := max(x , 0) is applied elementwise. Let fNN(x ;P,Q)
denote a random feedforward deep net with weight matrices W (d)

entries sampled iid from αP + (1− α)δ0, and bias b(d) from Q.

Theorem (Price et al. 19’)

Let fNN(x ;α,P,Q) be a random sparse net with layers of width
k . Then, if E[|uT ŵi |] ≥ M‖u‖, where ŵi is restriction of any row
of a weight matrix to its P distributed entries, and u and M are
constants, then E[l(z(d)(t))] ≥

(
αM

2

)d

· l(x(t))

for x(t) a 1-dimensional trajectory in input space.
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Expressivity through path length (Price et al. 19) pt. 2

Theorem (Price et al. 19’)

Let fNN(x ;α,P,Q) be a random sparse net with layers of width k .
Then, if E[|uT ŵi |] ≥ M‖u‖, where ŵi is restriction of any row of a
weight matrix to its αP + (1− α)δ0 distributed entries, and u and
M are constants, then

E[l(z(d)(t))] ≥
(
αM

2

)d

· l(x(t))

for x(t) a 1-dimensional trajectory in input space.

This theorem bounds exponential growth with depth for random
initializations such as Gaussian, uniform, and discrete; e.g. for
Gaussian with variance σw we have M = σw

√
2/π.
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Convolutional Neural Networks:

Convolutional neural network layers impose a structure on W (i):

5

W (i) is composed of a “mask” (usually of compact support, say
just living on 9 pixels) translated by some amount which is referred
to as “stride.” These “masks” are sometimes referred to as
“features.” Additional nonlinearities include “max pooling.”

5https://arxiv.org/pdf/1607.08194.pdf
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Exemplar CNN structure: LeNet5 LeCun et. al. 1998

6

C1: conv. layer with 6 feature maps, 5 by 5 support, stride 1.
S2 (and S4): non-overlapping 2 by 2 blocks which equally sum
values, mult by weight and add bias.
C3: conv. layer with 16 features, 5 by 5 support, partial connected.
C5: 120 features, 5 by 5 support, no stride; i.e. fully connected.
F6: fully connected, W ∈ R84×120.
CNNs trained on a data set typically work well on other, related,
data sets with different labels by retraining just the last layer.
Why might this be? What do the conv. filters look like?

6http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
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Convolutional Deep Belief Networks(H. Lee et al. 11’8)

We omit the details of this somewhat different architecture, which
is stylistically similar to a deep CNN.

Display of the convolutional masks in layers 1 and 2, trained from
Kyoto natural image database.7 Note wavelet structures.

7http://eizaburo-doi.github.io/kyoto_natim/
8http://www.cs.utoronto.ca/~rgrosse/cacm2011-cdbn.pdf
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Convolutional Deep Belief Networks(H. Lee et al. 11’10)

The third and fourth layers develop bases which represent features
or objects, trained on CalTech 101 dataset.9.

9http://www.vision.caltech.edu/Image_Datasets/Caltech101/
10http://www.cs.utoronto.ca/~rgrosse/cacm2011-cdbn.pdf
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Deep CNN, AlexNet(Krizhevsky et al. 12’11)

Images are those that maximize specific activation responses.
Layer 1 are masks, subsequent layers are their linear combinations.

11http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.

pdf
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Deep CNN, VGG(Mahendran et al. 16’12)

Note, again we observe the same pattern, the initial filters are
similar to Gabor/Wavelet filters and later layers are image
components.

12https://arxiv.org/abs/1512.02017
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Summary: similarity and importance of initial layers

We observe the initial layer of CNNs to be similar to one another,
and to exhibit wavelet like representations. This is to be expected.

Accuracy of a random network is improved most by training earlier
layers (Raghu 16’13).

13https://arxiv.org/pdf/1611.08083.pdf
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Wavelet, curvelet, and contourlet: fixed representations

Applied and computational harmonic analysis community
developed representations with optimal approximation properties
for piecewise smooth functions.

Most notable are the Daubechies wavelets and
Curvelets/Contourlets pioneered by Candes and Donoho.
While optimal, in a certain sense, for a specific class of functions,
they can typically be improved upon for any particular data set.
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Optimality of curvelets in 2D

Theorem (Candes and Donoho 02’a)

ahttp://www.curvelet.org/papers/CurveEdges.pdf

Let f be a two dimensional function that is piecewise C 2 with
a boundary that is also C 2. Let f Fn , f Wn , and f Cn be the best
approximation of f using n terms of the Fourier, Wavelet and
Curvelet representation respectively. Then their approximation er-
ror satisfy ‖f − f Fn ‖2L2 = O(n−1/2), ‖f − f Wn ‖2L2 = O(n−1), and

‖f − f Cn ‖2L2 = O(n−2 log3(n)); moreover, no fixed representation
can have a rate exceeding O(n−2).

Near optimality of such representation suggest a good first layer.
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Should we be deterministic or use learning?

The first layer of a net is seemingly the most important, and if we
have good prior knowledge of the data we can probably guess near
optimal candidate weights.
One can perform classification based on two layer net with:
layer 1: h2(x) = σ(W (1)x + b(1)) where W (1) is a fixed transform
of x to, say, the wavelet domain and σ(·) project to keep just the
largest entries with hard or soft thresholding;

σhard(x ; τ) =


x x > τ
0 |x | ≤ τ
−x x < −τ

, σsoft(x ; τ) =


x − τ x > τ

0 |x | ≤ τ
−x + τ x < −τ

layer2: h3 = σ(W (2)h2 + b(2)) with W (2) learned as the classifier
based on the sparse codes h2.
However, h2 does not build in invariance we would desire in
classification, such as dilation, rotation, translation, etc... Depth
remains important to generate these.
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