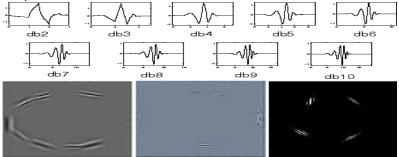
Dictionary learning as a model for the first layer of a deep net

 Algorithms used for recovery of sparse activations: Selection of a subset of a dictionary for optimal signal representation
 Proofs of recovery of sparse activations using one step thresholding, matching pursuit algorithms, and convex regularisers

 The K-SVD algorithm and other methods to solve the dictionary update step

Wavelet, curvelet, and contourlet: fixed representations

Applied and computational harmonic analysis community developed representations with optimal approximation properties for piecewise smooth functions.



Most notable are the Daubechies wavelets and Curvelets/Contourlets pioneered by Candes and Donoho. While optimal, in a certain sense, for a specific class of functions, they can typically be improved upon for any particular data set.

Optimality of curvelets in 2D

Theorem (Candes and Donoho 02'^a)

^ahttp://www.curvelet.org/papers/CurveEdges.pdf

Let f be a two dimensional function that is piecewise C^2 with a boundary that is also C^2 . Let f_n^F , f_n^W , and f_n^C be the best approximation of f using n terms of the Fourier, Wavelet and Curvelet representation respectively. Then their approximation error satisfy $||f - f_n^F||_{L^2}^2 = \mathcal{O}(n^{-1/2})$, $||f - f_n^W||_{L^2}^2 = \mathcal{O}(n^{-1})$, and $||f - f_n^C||_{L^2}^2 = \mathcal{O}(n^{-2}\log^3(n))$; moreover, no fixed representation can have a rate exceeding $\mathcal{O}(n^{-2})$.

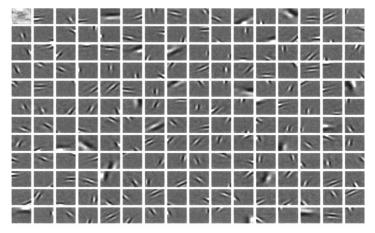
Near optimality of such representation suggest a good first layer.

While there are representations that are near optimal for realistic classes of functions, one can usually improve upon them for a particular data set; that is, one can learn a better dictionary for that data.

Let $Y \in \mathbb{R}^{m \times p}$ be a collection of p data elements in \mathbb{R}^m . Each data element y_i can be well represented by a dictionary $D \in \mathbb{R}^{m \times n}$ if there exists an x_i with at most k nonzeros such that $||y_i - Dx_i|| \le \epsilon(k)$. This can be combined in matrix notation as $\min_X ||Y - DX||$ subject to $||x_i||_0 \le k$ for $i = 1, \dots, p$. Note that solving for the optimal x_i for each y_i is in general NPhard, but for well behaved D it is easy. Dictionary learning does a step further and learns the optimal D

$$\min_{D,X} \|Y - DX\| \text{ subject to } \|x_i\|_0 \le k, \ \|d_i\| = 1$$

Dictionary learned from natural scenes (Olshausen and Field $96'^1$



Note the similarity to curvelets and the first layer of deep CNNs.

¹https://www.nature.com/articles/381607a0.pdf

Alternating direction method of multipliers (ADMM) holds all but one component of a problem fixed and solves the other, then iterates through the variables to be solved for. For dictionary learning this is iteratively solving:

$$\min_{X:\|x_i\|_0 \le k} \|Y - DX\| \quad \text{then} \quad \min_{D:\|d_i\|=1} \|Y - DX\|$$

There are many methods for solving each of these subproblems. Solving for \overline{X} is more challenging, and will be our focus for now. While better solutions exist, if X is held fixed one can solve for $YX^T = DXX^T$ as $X \in \mathbb{R}^{n \times p}$ for p > n allowing $D = YX^T(XX^T)^{-1}$ followed by normalising the columns.

Coherence

With n > m the columns of D ∈ ℝ^{m×n} can't be orthogonal, we measure their dependence by the coherence of the columns.

$$\mu_2(D) := \max_{i \neq j} |d_i^* d_j|$$

The collection of columns which are minimally coherent are called Grassman Frames and satisfy:

$$\mu_2(A_{m,n}) \ge \left(\frac{n-m}{m(n-1)}\right)^{1/2} \sim m^{-1/2}$$

We can use coherence to analyse a number of algorithms to try and solve the sparse coding problem

$$\min_{x} \|x\|_0 \quad \text{subject to} \quad \|y_i - Dx_i\| \leq \tau$$

which in its worst case is NP-hard to solve.

One step thresholding

Input: *y*, *D* and *k* (number of non-zeros in output vector). **Algorithm:** Set Λ the index set of the $k \leq m$ largest in $|D^*y|$ Output the *n*-vector *x* whose entries are

$$x_{\Lambda} = (D_{\Lambda}^* D_{\Lambda})^{-1} D_{\Lambda}^* y$$
 and $x(i) = 0$ for $i \notin \Lambda$.

Theorem

Let $y = Dx_0$, with the columns of D having unit ℓ^2 norm, and

$$\|x_0\|_0 < \frac{1}{2} \left(\nu_{\infty}(x_0) \cdot \mu_2(D)^{-1} + 1 \right),$$

then the Thresholding decoder with $k = ||x_0||_0$ will return x_0 , with $\nu_p(x) := \min_{j \in \text{supp}(x)} |x(j)| / ||x||_p$.

One step thresholding (proof)

Proof.

With $y = Dx_0$, denote $w = D^*y = D^*Dx_0$. The *i*th entry in w is equal to $w_i = \sum_{j \in \text{supp}(x_0)} x_0(j)d_i^*d_j$. For $i \notin \text{supp}(x_0)$ the magnitude of w_i is bounded above as:

$$|w_i| \leq \sum_{j \in \mathsf{supp}(x_0)} |x_0(j)| \cdot |d_i^* d_j| \leq k \mu_2(D) ||x_0||_{\infty}.$$

For $i \in \text{supp}(x_0)$ the magnitude of w_i is bounded below as:

$$|w_i| \geq |x_0(i)| - \left| \sum_{j \in supp(x_0), j \neq i} x_0(j) d_i^* d_j \right| \\ \geq |x_0(i)| - (k-1) \mu_2(D) ||x_0||_{\infty}.$$

Recovery if $\max_{i \notin \text{supp}(x_0)} |w_i| < \min_{i \in \text{supp}(x_0)} |w_i|$.

Matching Pursuit (Tropp 04'²)

Input: *y*, *D* and *k* (number of nonzeros in output vector). **Algorithm:** Let $r^j := y - Dx^j$. Set $x^0 = 0$, and let $i := \operatorname{argmax}_{\ell} |d_{\ell}^* r^j|$ and define $x^{j+1} = x^j + (d_i^* r^j) e_i$ where e_i is the *i*th coordinate vector. Output x^j when a termination criteria is obtained.

Theorem

Let $y = Dx_0$, with the columns of D having unit ℓ^2 norm, and

$$\|x_0\|_{\ell^0} < \frac{1}{2} \left(\mu_2(D)^{-1} + 1 \right),$$

then Matching Pursuit will have $supp(x^j) \subseteq supp(x_0)$ for all j.

* Preferable over one step thresholding: no dependence on $\nu_p(x_0)$.

²https://ieeexplore.ieee.org/document/1337101

Matching Pursuit (proof)

Proof.

Assume supp $(x^j) \subset$ supp (x_0) for some j, which is true for j = 0. Let $r^j = y - Dx^j$, and $w_i = \sum_{\ell \in \text{supp}(x_0)} (x_0 - x^j)(\ell) \cdot d_i^* d_\ell$. For $i \notin \text{supp}(x_0)$ the magnitude of w_i is bounded above as:

$$|w_i| \leq \sum_{\ell \in \text{supp}(x_0)} |(x_0 - x^j)(\ell)| \cdot |d_i^* d_\ell| \leq k \mu_2(D) ||x_0 - x^j||_{\infty}.$$

For $i \in \text{supp}(x_0)$ the magnitude of w_i is bounded below as:

$$egin{array}{rcl} |w_i| &\geq & |(x_0-x^j)(i)| - \left|\sum_{\ell\in ext{supp}(x_0), \ell
eq i} (x_0-x^j)(\ell) \cdot d_i^* d_\ell
ight| \ &\geq & |(x_0-x^j)(i)| - (k-1) \mu_2(D) \|x_0-x^j\|_\infty. \end{array}$$

Recovery if $\max_{i \in \text{supp}(x_0)} |w_i| > \max_{i \notin \text{supp}(x_0)} |w_i|$.

Orthogonal Matching Pursuit (Tropp 04'³)

Input: *y*, *D* and *k* (number of nonzeros in output vector). **Algorithm:** Let $r^j := y - Dx^j$. Set $x^0 = 0$ and Λ^0 to be the empty set, and set j = 0. Let $r^j := y - Dx^j$, $i := \operatorname{argmax}_{\ell} |d_{\ell}^* r^j|$, and $\Lambda^{j+1} = i \bigcup \Lambda^j$. Set $x_{\Lambda^{j+1}}^{j+1} = (D_{\Lambda^{j+1}}^* D_{\Lambda^{j+1}})^{-1} D_{\Lambda^{j+1}}^* y$ and $x^{j+1}(\ell) = 0$ for $\ell \notin \Lambda^{j+1}$, and set j = j + 1. Output x^j when a termination criteria is obtained.

Theorem

Let $y = Dx_0$, with the columns of D having unit ℓ^2 norm, and

$$\|x_0\|_{\ell^0} < \frac{1}{2} \left(\mu_2(D)^{-1} + 1 \right),$$

then after $||x_0||_{\ell^0}$ steps, Orthogonal Matching Pursuit recovers x_0 .

<u>* Proof, same as Matching Pur</u>suit. Finite number of steps.

³https://ieeexplore.ieee.org/document/1337101

Theories of DL Lecture 4 Dictionary Learning and sparse coding

Input: y and D. **"Algorithm":** Return argmin $||x||_1$ subject to y = Dx.

Theorem

Let $y = A_{m,n}x_0$, with

$$\|x_0\|_{\ell^0} < \frac{1}{2} \left(\mu_2(D)^{-1} + 1 \right),$$

then the solution of ℓ^1 -regularization is x_0 .

* Preferable over OMP: faster if use good ℓ^1 solver.

⁴http: //users.cms.caltech.edu/~jtropp/papers/Tro06-Just-Relax.pdf Theories of DL Lecture 4 Dictionary Learning and sparse coding

Proof.

Let $\Lambda_0 := supp(x_0)$ and $\Lambda_1 := supp(x_1)$ with $y = Dx_0 = Dx_1$, and $\exists i$ with $i \in \Lambda_1$ with $i \notin \Lambda_0$. Note that because $y = D_{\Lambda_0} x_0 = D_{\Lambda_1} x_1$,

$$\begin{aligned} \|x_0\|_1 &= \|(D^*_{\Lambda_0}D_{\Lambda_0})^{-1}D^*_{\Lambda_0}D_{\Lambda_0}x_0\|_1 \\ &= \|(D^*_{\Lambda_0}D_{\Lambda_0})^{-1}D^*_{\Lambda_0}y\|_1 \\ &= \|(D^*_{\Lambda_0}D_{\Lambda_0})^{-1}D^*_{\Lambda_0}D_{\Lambda_1}x_1\|_1. \end{aligned}$$

Establish bounds on $(D^*_{\Lambda_0}D_{\Lambda_0})^{-1}D^*_{\Lambda_0}d_i$.

To establish proof need bounds for $i \in \Lambda$ and $i \notin \Lambda$.

For
$$i \in \Lambda_0$$
: $\|(D^*_{\Lambda_0}D_{\Lambda_0})^{-1}D^*_{\Lambda_0}d_i\|_1$
= $\|(D^*_{\Lambda_0}D_{\Lambda_0})^{-1}D^*_{\Lambda_0}D_{\Lambda_0}e_i\|_1 = \|e_i\|_1 = 1$

Proof.

For any $i \notin \Lambda_0$ we establish the bound in two parts; first,

$$\|D^*_{\Lambda_0}d_i\|_1\leq \sum_{\ell\in\Lambda_0}|d^*_\ell d_i|\leq k\mu_2(D).$$

Noting $D^*_{\Lambda_0}D_{\Lambda_0}=I_{k,k}+B$ where $B_{i,i}=0$ and $|B_{i,j}|\leq \mu_2(D)$, then

$$\|(I_{k,k}+B)^{-1}\|_1 = \left\|\sum_{\ell=0}^{\infty} (-B)^{\ell}\right\|_1 \le \sum_{\ell=0}^{\infty} \|B\|_1^{\ell} = \frac{1}{1-\|B\|_1} \le \frac{1}{1-(k-1)\mu}$$

Therefore, for $i \notin \Lambda_0$:

$$\|(D^*_{\Lambda_0}D_{\Lambda_0})^{-1}D^*_{\Lambda_0}d_i\|_1 \leq rac{k\mu_2(D)}{(1-(k-1)\mu_2(D))} < 1$$

Proof.

Proof concludes through triangle inequality and use that:

- For $i \in \Lambda_0$: $\|(D^*_{\Lambda_0}D_{\Lambda_0})^{-1}D^*_{\Lambda_0}d_i\|_1 = 1$
- For $i \notin \Lambda_0$: $\|(D^*_{\Lambda_0}D_{\Lambda_0})^{-1}D^*_{\Lambda_0}d_i\|_1 < 1$
- And $\exists i$ with $i \in \Lambda_1$ and $i \notin \Lambda_0$.

Then,

$$\begin{split} \|x_0\|_1 &= \left\| \sum_{i \in \Lambda_1} (D^*_{\Lambda_0} D_{\Lambda_0})^{-1} D^*_{\Lambda_0} d_i x_1(i) \right\|_1 \\ &\leq \left\| \sum_{i \in \Lambda_1} |x_1(i)| \cdot \| (D^*_{\Lambda_0} D_{\Lambda_0})^{-1} D^*_{\Lambda_0} d_i \|_1 \\ &< \left\| \sum_{i \in \Lambda_1} |x_1(i)| = \| x_1 \|_1. \end{split} \right.$$

But, is the solution even unique?

The sparsity of the sparsest vector in the nullspace of D,

$$spark(D) := \min_{z} \|z\|_{\ell^0}$$
 subject to $Dz = 0$.

Theorem (Coherence and Spark)

$$spark(D) \ge min(m+1, \mu_2(D)^{-1}+1)$$

If $||x_0|| < (\mu_2(D)^{-1} + 1)/2$ unique satisfying $y = Dx_0$.

Proof.

Gershgorin disc theorem for $D_{\Lambda}^* D_{\Lambda}$ with $|\Lambda| = k$: 1 on diagonal, off diagonals bounded by $\mu_2(D)$. If $k < \mu_2(D)^{-1} + 1$, smallest singular value of $D_{\Lambda}^* D_{\Lambda}$ is > 0

How to interpret these results, is better possible?

▶ When is $\|x_0\|_{\ell^0} < \frac{1}{2} (\mu_2(D)^{-1} + 1)$? Grassman Frames: $\mu_2(D) \ge \left(\frac{n-m}{m(n-1)}\right)^{1/2} \sim m^{-1/2}$ "Sqrt bottleneck" $\|x_0\|_{\ell^0} \lesssim \sqrt{m}$

How to interpret these results, is better possible?

- ▶ When is $||x_0||_{\ell^0} < \frac{1}{2} (\mu_2(D)^{-1} + 1)$? Grassman Frames: $\mu_2(D) \ge \left(\frac{n-m}{m(n-1)}\right)^{1/2} \sim m^{-1/2}$ "Sqrt bottleneck" $||x_0||_{\ell^0} \le \sqrt{m}$
- Is better possible? (not without more)
 Fourier & Dirac: D = [F I] for m the square of an integer:
 Let Λ = [√m, 2√m, ···, m], then
 ∑_{j∈Λ} e_j = ∑_{j∈Λ} f_j ⇒ spark(D) = 2√m.

How to interpret these results, is better possible?

- ▶ When is $||x_0||_{\ell^0} < \frac{1}{2} (\mu_2(D)^{-1} + 1)$? Grassman Frames: $\mu_2(D) \ge \left(\frac{n-m}{m(n-1)}\right)^{1/2} \sim m^{-1/2}$ "Sqrt bottleneck" $||x_0||_{\ell^0} \le \sqrt{m}$
- Is better possible? (not without more)
 Fourier & Dirac: D = [F I] for m the square of an integer:
 Let Λ = [√m, 2√m, ···, m], then
 ∑_{j∈Λ} e_j = ∑_{j∈Λ} f_j ⇒ spark(D) = 2√m.
- ► Slightly more accurate sometimes with cumulative coherence: max_{i∈Λ}max_{Λ'} ∑_{j∈Λ'} d_i^{*}d_j
- To avoid pathological cases introduce randomness

One step thresholding: average sign pattern [ScVa07]

Input: *y*, *D* and *k* (number of nonzeros in output vector). **Algorithm:** Set Λ the index set of the $k \leq m$ largest in $|D^*y|$ Output the *n*-vector *x* whose entries are

$$x_{\Lambda} = (D_{\Lambda}^* D_{\Lambda})^{-1} D_{\Lambda} y$$
 and $x(i) = 0$ for $i \notin \Lambda$.

One step thresholding: average sign pattern [ScVa07]

Input: *y*, *D* and *k* (number of nonzeros in output vector). **Algorithm:** Set Λ the index set of the $k \leq m$ largest in $|D^*y|$ Output the *n*-vector *x* whose entries are

$$x_{\Lambda} = (D_{\Lambda}^* D_{\Lambda})^{-1} D_{\Lambda} y$$
 and $x(i) = 0$ for $i \notin \Lambda$.

Theorem

Let $y = Dx_0$, with the columns of D having unit ℓ^2 norm, the sign of the nonzeros in x_0 selected randomly from ± 1 independent of D, and

$$\|x_0\|_{\ell^0} < (128\log(2n/\epsilon))^{-1}\nu_\infty^2(x_0)\mu_2^{-2}(D),$$

then, with probability greater than $1 - \epsilon$, the Thresholding decoder with $k = ||x_0||_{\ell^0}$ will return x_0 .

Theorem (Rademacher concentration)

Fix a vector α . Let ϵ be a Rademacher series, vector with entries drawn uniformly from ± 1 , of the same length as α , then

$$\operatorname{Prob}\left(\left|\sum_{i}\epsilon_{i}\alpha_{i}\right| > t\right) \leq 2\exp\left(\frac{-t^{2}}{32\|\alpha\|_{2}^{2}}\right)$$

Let $\Lambda := \operatorname{supp}(x_0)$. Thresholding fail to recover x_0 if

$$\max_{i\notin\Lambda}|d_i^*y|>\min_{i\in\Lambda}|d_i^*y|.$$

$$\begin{aligned} & \mathsf{Prob}\left(\max_{i\notin\Lambda}|d_i^*y| > p \quad \text{and} \quad \min_{i\in\Lambda}|d_i^*y| < p\right) &\leq \\ & \mathsf{Prob}\left(\max_{i\notin\Lambda}|d_i^*y| > p\right) + \mathsf{Prob}\left(\min_{i\in\Lambda}|d_i^*y| < p\right) &=: \quad P_1 + P_2 \end{aligned}$$

One step thresholding: average sign pattern (proof, pg. 2)

$$P_{1} = \operatorname{Prob}\left(\max_{i\notin\Lambda}|d_{i}^{*}y| > p\right)$$

$$\leq \sum_{i\notin\Lambda}\operatorname{Prob}\left(|d_{i}^{*}y| > p\right)$$

$$= \sum_{i\notin\Lambda}\operatorname{Prob}\left(\left|\sum_{j\in\Lambda}x_{0}(j)(d_{i}^{*}d_{j})\right| > p\right)$$

$$\leq 2\sum_{i\notin\Lambda}\exp\left(\frac{-p^{2}}{32\sum_{j\in\Lambda}|x_{0}(j)|^{2}|d_{i}^{*}d_{j}|^{2}}\right)$$

$$\leq 2(n-k)\exp\left(\frac{-p^{2}}{32k||x_{0}||_{\infty}^{2}\mu_{2}^{2}(D)}\right).$$

One step thresholding: average sign pattern (proof, pg. 3)

$$P_{2} = \operatorname{Prob}\left(\min_{i \in \Lambda} |d_{i}^{*}y| < p\right)$$

$$\leq \operatorname{Prob}\left(\min_{i \in \Lambda} |x_{0}(i)| - \max_{i \in \Lambda} \left|\sum_{j \in \Lambda, j \neq i} x_{0}(j)(d_{i}^{*}d_{j})\right| < p\right)$$

$$\leq \sum_{i \in \Lambda} \operatorname{Prob}\left(\left|\sum_{j \in \Lambda, j \neq i} x_{0}(j)(d_{i}^{*}d_{j})\right| > \min_{i \in \Lambda} |x_{0}(i)| - p\right)$$

$$\leq 2\sum_{i \in \Lambda} \exp\left(\frac{-(\min_{i \in \Lambda} |x_{0}(i)| - p)^{2}}{32\sum_{j \in \Lambda, j \neq i} |x_{0}(j)|^{2}|d_{i}^{*}d_{j}|^{2}}\right)$$

$$\leq 2k \exp\left(\frac{-(\min_{i \in \Lambda} |x_{0}(i)| - p)^{2}}{32k ||x_{0}||_{\infty}^{2}\mu_{2}^{2}(D)}\right).$$

Balance P_1 and P_2 by setting $p := \min_{i \in \Lambda} |x_0(i)|/2$:

$$P_1 + P_2 \le 2n \exp\left(\frac{-(\min_{i \in \Lambda} |x_0(i)|)^2}{128k \|x_0\|_{\infty}^2 \mu_2^2(D)}\right) \le 2n \exp\left(\frac{-\nu_{\infty}(x_0)^2}{128k \mu_2^2(D)}\right).$$

Setting this bound on the probability of failure equal to ϵ and solving for k yields the conclusion of the proof.

- Similar work for matching pursuit by Schnass, l¹ by Tropp, and in Statistical RICs
- Stronger uniform statements we need more than coherence.

Alternating direction method of multipliers (ADMM) holds all but one component of a problem fixed and solves the other, then iterates through the variables to be solved for. For dictionary learning this is iteratively solving:

$$\min_{X: \|x_i\|_0 \le k} \|Y - DX\| \quad \text{then} \quad \min_{D: \|d_i\| = 1} \|Y - DX\|$$

Returning to the dictionary update step. Algorithms include Method of optimal directions: solve for $YX^T = DXX^T$ as $X \in \mathbb{R}^{n \times p}$ for p > n allowing $D = YX^T(XX^T)^{-1}$ followed by normalising the columns, K-SVD, and steepest descent or other gradient updates of D.

Dictionary learning: K-SVD (Aharon et al. $'06^5$)

For a fixed sparse code one can view $\min_{D:||d_i||=1} ||Y - DX||$ in terms of individual columns:

$$\left|Y-\sum_{i=1}^n d_i \tilde{x}_i^T\right|$$

where \tilde{x}_i^T is the *i*th row of X. Being faithful to the sparsity constraint, we can view d_i as a column used to represent those columns in Y indexed by the support of \tilde{x}_i^T . Letting $E_i = [Y - \sum_{j \neq i} d_j \tilde{x}_j^T]_{supp(\tilde{x}_i^T)}$ our task is to minimize

$$\left| E_i - d_i \tilde{z}_i^T \right|$$

where z_i^T is a vector of length $|\text{supp}(\tilde{x}_i^T)|$, and whose solution is given by the best rank 1 approximation of E_i .

⁵https://ieeexplore.ieee.org/document/1710377