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A data model generated through a deep sparse
deconvolutional model

> A notion of stripe sparsity based on locality of the features;
stripe sparsity

» Proof that for such data the generating activations are
obtained in a deep network formulation

» Examples of representations learned through the sparse
deconvolutional models, and early results using ¢!
regularization.
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CNN model through sparse coding (Papyan et al. 16'!)

Consider a deep conv. net composed of two convolutional layers:
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The forward map (note notation using transpose of W(/):

=0 (b(2) + (WD), (b(l) n (W(l))Tx))

"https://arxiv.org/pdf/1607.08194.pdf
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Deconvolutional NN data model (Papyan et al. 16"

X € RV D, € RV>Nma r, € RYV™
ey
no N
- | e s,
L, € RV D, € RN >x<Nmz I, € RV™=2

Two layer deconvolutional data model with weight matrices fixed,
w() = D;, and '; > 0 whose values compose data element X.

https://arxiv.org/pdf/1607.08194 . pdf
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Stripe sparsity model (Papyan et al. 16'3)

Consider a data vector x restricted to a patch of n consecutive
entries, x; € R". Due to the convolutional structure in D with m
masks, each of length n, the portion of I that can influence x; is
the patch ; € RGn—1)m,

m] yi € R@n-Dm

Figure 4: The i-th patch x; of the global system X = DT, given by x; = Q-;.
We consider ' to have a stripe sparsity defined by
S — . .
73,00 = maxill7illo-

*https://arxiv.org/pdf/1607.08194 . pdf
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Data model of union of subspaces (Papyan et al. 16'*)

Consider the data model where for fixed known {D;}" ; and stripe
sparsity [|[]|§ o < si for i =1,-, N the data is composed by

X = Dil4
N = Dol
rN,1 = DNFN (1)

For such a data model is it guaranteed that a deep network with
weights W(1) = D,-T would have the same activations as [;; that is
would T'; be similar to hj11 = O’(W(i)h,') in some norm or
otherwise?

*https://arxiv.org/pdf/1607.08194.pdf
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Stability of layered hard thresholding (Papyan et al. 16°)

Let Y = X + E where E denotes missfit to the model or noise and
X be given by the data model (1null).
Let ||E||§7Oo < ¢y be a local bound on the error and let I'; =

Hj, (Din;_1> where [ = Y, then if 3; are chosen appropriately

(formulae available) and

L N e
||r,~||soos—<1+u 1yl ) (D)L
0 2 |r,' | |ri 2|

then the support of f,- and I'; are the same and moreover
M= Fillf e < € = /IFil s (i1 + RO o — 1)

v

For simple union of subspace data models the convolutional
network is guaranteed to recover the generating activations with

Theories of DL Lecture 5 Deep convolutional sparse coding


https://arxiv.org/pdf/1607.08194.pdf

Learned ML-CSC on MNIST (Sulam et al. 18°)
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Fig. 3: ML-CSC model trained on the MNIST dataset. a) The local filters of the dictionary D;. b) The local filters of the

effective dictionary D®) = DyDy. ¢) Some of the 1024 local atoms of the effective dictionary D®) which, because of the
dimensions of the filters and the strides, are global atoms of size 28 x 28.

Learned dictionaries are show increasing structure from local
wavelets in D; to composite features in Do to representative
numbers in Ds.

®https://arxiv.org/abs/1708.08705
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Stability of layered (!-regularization (Papyan et al. 16'7)

Let Y = X + E where E denotes missfit to the model or noise and
X be given by the data model (1null).

Let HEHZOO < €p be a local bound on the error and let

;= argminp &ML + %HD,-F - f,-_1||% where o = Y, then

if & = 4¢;_1 and ||F,-||3700 < %(1 —|—,u_1(D,-)) then the support of
f,- and [; are the same and moreover

T = Fill5 o < € = N5 7-5 T4 /IIT;

P
0,00"

More complex methods to determine activations give provable
recovery with less strict conditions, here ||['||§ ., has not
dependence on the magnitude of entries.

"https://arxiv.org/pdf/1607.08194.pdf
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Accuracy of multi-layer ¢!-regularizers (Sulam et al. 18'8)

Test Accuracy - CIFAR
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Three layer networks with ¢! regularization through (F)ISTA vs. a
six layer CNN (three layers convolutional layers followed by fully
connected layers). LISTA and LBP are variants also using ¢
regularization.

®https://arxiv.org/pdf/1806.00701 . pdf
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Union of randomized subspaces (Murray et al. 18'°)

Consider the data model where for fixed known {D;}"_; and stripe
sparsity [|[]|§ o < si for i =1,-, N the data is composed by

X = Dixili+ W
M = Dol + W

Mv—1 = DnInTn+ Vn-a (2)

where %; are diagonal matrices whose diagonal is composed of
randomly drawn +1.

Introducing this randomness allows us to further weaken the
conditions on the coherence needed to guarantee recovery.

https://ieeexplore.ieee.org/document/8439894
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Provable activation pathway recovery (Murray et al. 18'10)

Let X' be consistent with the D-CSC model (2null), with
IVOIEY < ¢ and XD S < S forall I =0,...,L—1, and £

,O0
diagonal matrices with independent Rademacher random variables.

Let denote as Z; the event that the activation path is successfully
recovered by hard thresholding I'; = Hs, (Din,-_l) . Then

_ ji: |)(U)‘2
P(Z) <2dM» njexp | — zin
=1 8 (|Xr(nlgx|2,u%sl - C/z_]_)

Where X(® ¢ RM*d and filters at layer / are of length n;.

4

The derived probability bound scales proportional to ul_z across a
given layer, rather than ,ul_l

Opttps://ieeexplore.icee.org/document/8439894
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One step thresholding: average sign pattern [ScVa07]

Input: y, D and k (number of nonzeros in output vector).
Algorithm: Set A the index set of the k < m largest in |[D*y|
Output the n-vector x whose entries are

xpn = (DiDA)1Dpy and  x(i) =0 for i & A.
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One step thresholding: average sign pattern [ScVa07]

Input: y, D and k (number of nonzeros in output vector).
Algorithm: Set A the index set of the k < m largest in |[D*y|
Output the n-vector x whose entries are

xpn = (DiDA)1Dpy and  x(i) =0 for i & A.

Let y = Dxp, with the columns of D having unit 2 norm, the sign
of the nonzeros in xp selected randomly from £1 independent of D,
and

Ixolleo < (128log(2n/€)) 12, (x0)H3 (D),

then, with probability greater than 1 — ¢, the Thresholding decoder
with k = ||xo||,0 will return xg.

v
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One step thresholding: average sign pattern (proof, pg. 1)

Fix a vector o«. Let ¢ be a Rademacher series, vector with entries
drawn uniformly from +1, of the same length as «, then

g2
Prob ( Ze;a,’ > t) < 2exp (M)

Let A := supp(xp). Thresholding fail to recover xq if

maxjga|d;y| > min |dy|.

Prob <max,-¢/\|d,-*y| >p and mi/r\w |diy| < p> <
e
Prob (maxjga|d;y| > p) + Prob <r_ni/r\1 |diy| < p> = Pi+P
ic

Theories of DL Lecture 5 Deep convolutional sparse coding



One step thresholding: average sign pattern (proof, pg. 2)

P1 = Prob(max;ga|d/y| > p)

< ) Prob(|dfy| > p)
i¢N

) " Prob ( > xol)(d; dy)| > P)

i¢A JEN

2

S -p

2y ex :
i i (32 2 jen |X0(J)|2\d,.*dj]2)

_p2
2n = k)ep <32ku><o|roou2( )) '
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One step thresholding: average sign pattern (proof, pg. 3)

P, = Prob <min |diy| < p>
ien

IN

Prob min |xo(7)| — maxjen . Z .Xo(j)(d,- d)| <p
JENJFI

zprob( >~ x0li)(d; d;)| > min xO(f)p)
ien JENj#i
(—(minien Ixo()] — p)?
2%,‘:(% P (32 Zje/\#, Ixo(j)[?|d; dj |2>
(minien lxo(7)| = p ))_
32k||x0[3.15(D)

IN

IN

IN

2k exp (
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One step thresholding: average sign pattern (proof, pg. 4)

Balance P; and P, by setting p := minjep [xo(i)|/2:
(minjen [x0(7)])? —Voo(X0)?
P1+P2§2nexp< <2nexp | ——5-— .
128K[1%0|213(D) 128k;:3(D)

Setting this bound on the probability of failure equal to € and
solving for k yields the conclusion of the proof. O

» Similar work for matching pursuit by Schnass, ¢! by Tropp,
and in Statistical RICs

» Stronger uniform statements we need more than coherence.
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Deep convolutional sparse coding: summary

» By constructing a union of subspace data model we can
employ methods of analysis developed by the compressed
sensing community.

» Data of this type provably have the activations one would
expect based on the data construction.

> Recovery is possible for nonlinear activations which include:
soft or hard thresholding as well as ¢!-regularization.

» The data model isn't as rich as we would hope as it is linear

> Recovery guarantees scale poorly with depth and are based on
coherence between filters which are not small for local
convolutional filters; recall Grassmann frame bounds.

» Open questions include the role of activations, learning the
features, and building in structure within and between labels.
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