Outline for today

- A data model generated through a deep sparse deconvolutional model
- A notion of stripe sparsity based on locality of the features; stripe sparsity
- Proof that for such data the generating activations are obtained in a deep network formulation
- ightharpoonup Examples of representations learned through the sparse deconvolutional models, and early results using ℓ^1 regularization.

CNN model through sparse coding (Papyan et al. 16'1)

Consider a deep conv. net composed of two convolutional layers:

$$\mathbf{Z}_{2} \in \mathbb{R}^{Nm_{2}} \quad \mathbf{b}_{2} \in \mathbb{R}^{Nm_{2}} \quad \mathbf{W}_{2}^{\mathsf{T}} \in \mathbb{R}^{Nm_{2} \times Nm_{1}}$$

$$\mathbf{b}_{1} \in \mathbb{R}^{Nm_{1}} \quad \mathbf{W}_{1}^{\mathsf{T}} \in \mathbb{R}^{Nm_{1} \times N}$$

$$\mathbf{X} \in \mathbb{R}^{N}$$

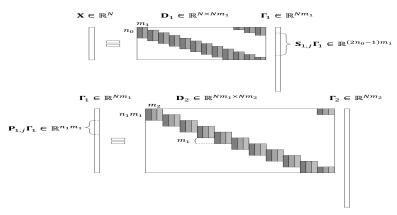
$$\mathbf{X} \in \mathbb{R}^{N}$$

The forward map (note notation using transpose of $W^{(i)}$):

$$Z_2 = \sigma \left(b^{(2)} + (W^{(2)})^T \sigma \left(b^{(1)} + (W^{(1)})^T x \right) \right)$$

¹https://arxiv.org/pdf/1607.08194.pdf

Deconvolutional NN data model (Papyan et al. 16'2)



Two layer deconvolutional data model with weight matrices fixed, $W^{(i)} = D_i$, and $\Gamma_i \ge 0$ whose values compose data element X.

²https://arxiv.org/pdf/1607.08194.pdf

Stripe sparsity model (Papyan et al. 16'3)

Consider a data vector x restricted to a patch of n consecutive entries, $x_i \in \mathbb{R}^n$. Due to the convolutional structure in D with m masks, each of length n, the portion of Γ that can influence x_i is the patch $\gamma_i \in \mathbb{R}^{(2n-1)m}$.

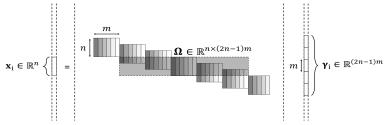


Figure 4: The *i*-th patch \mathbf{x}_i of the global system $\mathbf{X} = \mathbf{D}\mathbf{\Gamma}$, given by $\mathbf{x}_i = \mathbf{\Omega}\mathbf{\gamma}_i$.

We consider Γ to have a stripe sparsity defined by $\|\Gamma\|_{0,\infty}^s = \max_i \|\gamma_i\|_0.$

³https://arxiv.org/pdf/1607.08194.pdf

Data model of union of subspaces (Papyan et al. 16'4)

Consider the data model where for fixed known $\{D_i\}_{i=1}^N$ and stripe sparsity $\|\Gamma_i\|_{0,\infty}^s \leq s_i$ for $i=1,\cdot,N$ the data is composed by

$$X = D_1 \Gamma_1$$

$$\Gamma_1 = D_2 \Gamma_2$$

$$\vdots$$

$$\Gamma_{N-1} = D_N \Gamma_N$$
(1)

For such a data model is it guaranteed that a deep network with weights $W^{(i)} = D_i^T$ would have the same activations as Γ_i ; that is would Γ_i be similar to $h_{i+1} = \sigma(W^{(i)}h_i)$ in some norm or otherwise?

⁴https://arxiv.org/pdf/1607.08194.pdf

Stability of layered hard thresholding (Papyan et al. 16'5)

Theorem (Layered hard thresholding)

Let Y = X + E where E denotes missfit to the model or noise and X be given by the data model (1null).

Let $\|E\|_{2,\infty}^P \le \epsilon_0$ be a local bound on the error and let $\hat{\Gamma}_i = H_{\beta_i}\left(D_i^T\hat{\Gamma}_{i-1}\right)$ where $\hat{\Gamma}_0 = Y$, then if β_i are chosen appropriately (formulae available) and

$$\|\Gamma_i\|_{0,\infty}^s \leq \frac{1}{2} \left(1 + \mu^{-1}(D_i) \frac{|\Gamma_i^{min}|}{|\Gamma_i^{max}|}\right) - \mu^{-1}(D_i) \frac{\epsilon_{i-1}}{|\Gamma_i^{max}|}$$

then the support of $\hat{\Gamma}_i$ and Γ_i are the same and moreover $\|\Gamma_i - \hat{\Gamma}_i\|_{2,\infty}^P \leq \epsilon_i = \sqrt{\|\Gamma_i\|_{0,\infty}^P} \left(\epsilon_{i-1} + \mu(D_i)|\Gamma_i^{max}|(\|\Gamma_i\|_{0,\infty}^s - 1)\right).$

For simple union of subspace data models the convolutional network is guaranteed to recover the generating activations with

Learned ML-CSC on MNIST (Sulam et al. 18'6)

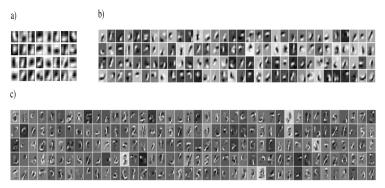


Fig. 3: ML-CSC model trained on the MNIST dataset. a) The local filters of the dictionary \mathbf{D}_1 . b) The local filters of the effective dictionary $\mathbf{D}^{(2)} = \mathbf{D}_1 \mathbf{D}_2$. c) Some of the 1024 local atoms of the effective dictionary $\mathbf{D}^{(3)}$ which, because of the dimensions of the filters and the strides, are global atoms of size 28×28 .

Learned dictionaries are show increasing structure from local wavelets in D_1 to composite features in D_2 to representative numbers in D_3 .

⁶https://arxiv.org/abs/1708.08705

Stability of layered ℓ^1 -regularization (Papyan et al. 16'7)

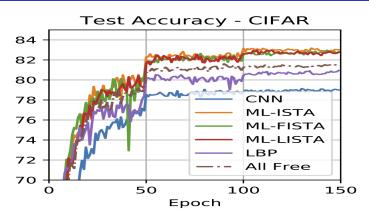
Let Y = X + E where E denotes missfit to the model or noise and X be given by the data model (1null).

Let $||E||_{2,\infty}^P \le \epsilon_0$ be a local bound on the error and let $\hat{\Gamma}_i = \operatorname{argmin}_{\Gamma} \xi_i \| \Gamma \|_1 + \frac{1}{2} \| D_i \Gamma - \hat{\Gamma}_{i-1} \|_2^2$ where $\hat{\Gamma}_0 = Y$, then if $\xi_i = 4\epsilon_{i-1}$ and $\|\Gamma_i\|_{0,\infty}^{\overline{s}} \leq \frac{1}{3} (1 + \mu^{-1}(D_i))$ then the support of $\hat{\Gamma}_i$ and Γ_i are the same and moreover $\|\Gamma_i - \hat{\Gamma}_i\|_{2,\infty}^P \le \epsilon_i = \|E\|_{2,\infty}^P 7.5^i \Pi_{i=1}^i \sqrt{\|\Gamma_j\|_{0,\infty}^P}.$

More complex methods to determine activations give provable recovery with less strict conditions, here $\|\Gamma_i\|_{0,\infty}^s$ has not dependence on the magnitude of entries.

⁷https://arxiv.org/pdf/1607.08194.pdf

Accuracy of multi-layer ℓ^1 -regularizers (Sulam et al. 18'8)



Three layer networks with ℓ^1 regularization through (F)ISTA vs. a six layer CNN (three layers convolutional layers followed by fully connected layers). LISTA and LBP are variants also using ℓ^1 regularization.

⁸https://arxiv.org/pdf/1806.00701.pdf

Union of randomized subspaces (Murray et al. 18'9)

Consider the data model where for fixed known $\{D_i\}_{i=1}^N$ and stripe sparsity $\|\Gamma_i\|_{0,\infty}^s \leq s_i$ for $i=1,\cdot,N$ the data is composed by

$$X = D_1 \Sigma_1 \Gamma_1 + V_0$$

$$\Gamma_1 = D_2 \Sigma_2 \Gamma_2 + V_1$$

$$\vdots$$

$$\Gamma_{N-1} = D_N \Sigma_N \Gamma_N + V_{N-1}$$
(2)

where Σ_i are diagonal matrices whose diagonal is composed of randomly drawn ± 1 .

Introducing this randomness allows us to further weaken the conditions on the coherence needed to guarantee recovery.

⁹https://ieeexplore.ieee.org/document/8439894

Provable activation pathway recovery (Murray et al. 18'10)

Theorem hard thresholding

Let $\hat{\mathbf{X}}^{(I-1)}$ be consistent with the D-CSC model (2null), with $\|\mathbf{V}^{(I)}\|_{2,\infty}^{P^{(I)}} \leq \zeta_I$ and $\|\mathbf{X}^{(I)}\|_{0,\infty}^{Q^{(I)}} \leq S_I$ for all $I=0,\ldots,L-1$, and $\Sigma^{(I)}$ diagonal matrices with independent Rademacher random variables. Let denote as Z_L the event that the activation path is successfully recovered by hard thresholding $\hat{\Gamma}_i = H_{S_i}\left(D_i^T\hat{\Gamma}_{i-1}\right)$. Then

$$P(\bar{Z}_L) \leq 2dM \sum_{l=1}^{L} n_l \exp \left(-\frac{|X_{min}^{(l)}|^2}{8\left(|X_{max}^{(l)}|^2 \mu_l^2 S_l + \zeta_{l-1}^2\right)}\right).$$

Where $X^{(0)} \in \mathbb{R}^{M \times d}$ and filters at layer I are of length n_I .

The derived probability bound scales proportional to μ_l^{-2} across a given layer, rather than μ_l^{-1}

¹⁰https://ieeexplore.ieee.org/document/8439894

One step thresholding: average sign pattern [ScVa07]

Input: y, D and k (number of nonzeros in output vector). **Algorithm:** Set Λ the index set of the $k \leq m$ largest in $|D^*y|$ Output the n-vector x whose entries are

$$x_{\Lambda} = (D_{\Lambda}^* D_{\Lambda})^{-1} D_{\Lambda} y$$
 and $x(i) = 0$ for $i \notin \Lambda$.

One step thresholding: average sign pattern [ScVa07]

Input: y, D and k (number of nonzeros in output vector). **Algorithm:** Set Λ the index set of the $k \leq m$ largest in $|D^*y|$ Output the n-vector x whose entries are

$$x_{\Lambda} = (D_{\Lambda}^* D_{\Lambda})^{-1} D_{\Lambda} y$$
 and $x(i) = 0$ for $i \notin \Lambda$.

Theorem

Let $y=Dx_0$, with the columns of D having unit ℓ^2 norm, the sign of the nonzeros in x_0 selected randomly from ± 1 independent of D, and

$$||x_0||_{\ell^0} < (128\log(2n/\epsilon))^{-1}\nu_\infty^2(x_0)\mu_2^{-2}(D),$$

then, with probability greater than $1 - \epsilon$, the Thresholding decoder with $k = ||x_0||_{\ell^0}$ will return x_0 .

One step thresholding: average sign pattern (proof, pg. 1)

Theorem (Rademacher concentration

Fix a vector α . Let ϵ be a Rademacher series, vector with entries drawn uniformly from ± 1 , of the same length as α , then

$$\left| \operatorname{Prob} \left(\left| \sum_{i} \epsilon_{i} \alpha_{i} \right| > t \right) \leq 2 \exp \left(\frac{-t^{2}}{32 \|\alpha\|_{2}^{2}} \right) \right|$$

Let $\Lambda := \text{supp}(x_0)$. Thresholding fail to recover x_0 if

$$\max_{i \notin \Lambda} |d_i^* y| > \min_{i \in \Lambda} |d_i^* y|.$$

$$\operatorname{Prob}\left(\max_{i\notin\Lambda}|d_i^*y|>p \quad \text{and} \quad \min_{i\in\Lambda}|d_i^*y|< p\right) \leq \\ \operatorname{Prob}\left(\max_{i\notin\Lambda}|d_i^*y|>p\right) + \operatorname{Prob}\left(\min_{i\in\Lambda}|d_i^*y|< p\right) \quad =: \quad P_1+P_2$$

One step thresholding: average sign pattern (proof, pg. 2)

$$\begin{aligned} P_1 &= \operatorname{\mathsf{Prob}} \left(\operatorname{\mathsf{max}}_{i \notin \Lambda} |d_i^* y| > p \right) \\ &\leq \sum_{i \notin \Lambda} \operatorname{\mathsf{Prob}} \left(\left| d_i^* y \right| > p \right) \\ &= \sum_{i \notin \Lambda} \operatorname{\mathsf{Prob}} \left(\left| \sum_{j \in \Lambda} x_0(j) (d_i^* d_j) \right| > p \right) \\ &\leq 2 \sum_{i \notin \Lambda} \exp \left(\frac{-p^2}{32 \sum_{j \in \Lambda} |x_0(j)|^2 |d_i^* d_j|^2} \right) \\ &\leq 2 (n-k) \exp \left(\frac{-p^2}{32 k \|x_0\|_{20}^2 \mu_2^2(D)} \right). \end{aligned}$$

One step thresholding: average sign pattern (proof, pg. 3)

$$\begin{split} P_2 &= \operatorname{Prob}\left(\min_{i \in \Lambda} |d_i^*y| < p\right) \\ &\leq \operatorname{Prob}\left(\min_{i \in \Lambda} |x_0(i)| - \max_{i \in \Lambda} \left| \sum_{j \in \Lambda, j \neq i} x_0(j)(d_i^*d_j) \right| < p\right) \\ &\leq \sum_{i \in \Lambda} \operatorname{Prob}\left(\left| \sum_{j \in \Lambda, j \neq i} x_0(j)(d_i^*d_j) \right| > \min_{i \in \Lambda} |x_0(i)| - p\right) \\ &\leq 2\sum_{i \in \Lambda} \exp\left(\frac{-(\min_{i \in \Lambda} |x_0(i)| - p)^2}{32\sum_{j \in \Lambda, j \neq i} |x_0(j)|^2 |d_i^*d_j|^2}\right) \\ &\leq 2k \exp\left(\frac{-(\min_{i \in \Lambda} |x_0(i)| - p)^2}{32k||x_0||_{\infty}^2 \mu_2^2(D)}\right). \end{split}$$

One step thresholding: average sign pattern (proof, pg. 4)

Balance P_1 and P_2 by setting $p := \min_{i \in \Lambda} |x_0(i)|/2$:

$$P_1 + P_2 \le 2n \exp\left(\frac{-(\min_{i \in \Lambda} |x_0(i)|)^2}{128k\|x_0\|_{\infty}^2 \mu_2^2(D)}\right) \le 2n \exp\left(\frac{-\nu_{\infty}(x_0)^2}{128k\mu_2^2(D)}\right).$$

Setting this bound on the probability of failure equal to ϵ and solving for k yields the conclusion of the proof.

- Similar work for matching pursuit by Schnass, ℓ¹ by Tropp, and in Statistical RICs
- Stronger uniform statements we need more than coherence.

Deep convolutional sparse coding: summary

- By constructing a union of subspace data model we can employ methods of analysis developed by the compressed sensing community.
- ▶ Data of this type provably have the activations one would expect based on the data construction.
- Recovery is possible for nonlinear activations which include: soft or hard thresholding as well as ℓ^1 -regularization.
- ► The data model isn't as rich as we would hope as it is linear
- Recovery guarantees scale poorly with depth and are based on coherence between filters which are not small for local convolutional filters: recall Grassmann frame bounds.
- ▶ Open questions include the role of activations, learning the features, and building in structure within and between labels.