
Outline for today

I A data model generated through a deep sparse
deconvolutional model

I A notion of stripe sparsity based on locality of the features;
stripe sparsity

I Proof that for such data the generating activations are
obtained in a deep network formulation

I Examples of representations learned through the sparse
deconvolutional models, and early results using `1

regularization.
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CNN model through sparse coding (Papyan et al. 16’1)

Consider a deep conv. net composed of two convolutional layers:

The forward map (note notation using transpose of W (i)):

Z2 = σ
(
b(2) + (W (2))Tσ

(
b(1) + (W (1))T x

))
1https://arxiv.org/pdf/1607.08194.pdf
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Deconvolutional NN data model (Papyan et al. 16’2)

Two layer deconvolutional data model with weight matrices fixed,
W (i) = Di , and Γi ≥ 0 whose values compose data element X .

2https://arxiv.org/pdf/1607.08194.pdf
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Stripe sparsity model (Papyan et al. 16’3)

Consider a data vector x restricted to a patch of n consecutive
entries, xi ∈ Rn. Due to the convolutional structure in D with m
masks, each of length n, the portion of Γ that can influence xi is
the patch γi ∈ R(2n−1)m.

We consider Γ to have a stripe sparsity defined by
‖Γ‖s0,∞ = maxi‖γi‖0.

3https://arxiv.org/pdf/1607.08194.pdf
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Data model of union of subspaces (Papyan et al. 16’4)

Consider the data model where for fixed known {Di}Ni=1 and stripe
sparsity ‖Γi‖s0,∞ ≤ si for i = 1, ·,N the data is composed by

X = D1Γ1

Γ1 = D2Γ2

...

ΓN−1 = DNΓN (1)

For such a data model is it guaranteed that a deep network with
weights W (i) = DT

i would have the same activations as Γi ; that is
would Γi be similar to hi+1 = σ(W (i)hi ) in some norm or
otherwise?

4https://arxiv.org/pdf/1607.08194.pdf
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Stability of layered hard thresholding (Papyan et al. 16’5)

Theorem (Layered hard thresholding)

Let Y = X + E where E denotes missfit to the model or noise and
X be given by the data model (1null).
Let ‖E‖P2,∞ ≤ ε0 be a local bound on the error and let Γ̂i =

Hβi

(
DT
i Γ̂i−1

)
where Γ̂0 = Y , then if βi are chosen appropriately

(formulae available) and

‖Γi‖s0,∞ ≤
1

2

(
1 + µ−1(Di )

|Γmin
i |
|Γmax

i |

)
− µ−1(Di )

εi−1

|Γmax
i |

then the support of Γ̂i and Γi are the same and moreover

‖Γi− Γ̂i‖P2,∞ ≤ εi =
√
‖Γi‖P0,∞

(
εi−1 + µ(Di )|Γmax

i |(‖Γi‖s0,∞ − 1)
)

.

For simple union of subspace data models the convolutional
network is guaranteed to recover the generating activations with
similar values.

5https://arxiv.org/pdf/1607.08194.pdf
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Learned ML-CSC on MNIST (Sulam et al. 18’6)

Learned dictionaries are show increasing structure from local
wavelets in D1 to composite features in D2 to representative
numbers in D3.

6https://arxiv.org/abs/1708.08705
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Stability of layered `1-regularization (Papyan et al. 16’7)

Theorem (Layered `1-regularization)

Let Y = X + E where E denotes missfit to the model or noise and
X be given by the data model (1null).
Let ‖E‖P2,∞ ≤ ε0 be a local bound on the error and let

Γ̂i = argminΓξi‖Γ‖1 + 1
2‖DiΓ− Γ̂i−1‖2

2 where Γ̂0 = Y , then
if ξi = 4εi−1 and ‖Γi‖s0,∞ ≤ 1

3

(
1 + µ−1(Di )

)
then the support of

Γ̂i and Γi are the same and moreover

‖Γi − Γ̂i‖P2,∞ ≤ εi = ‖E‖P2,∞7.5iΠi
j=1

√
‖Γj‖P0,∞.

More complex methods to determine activations give provable
recovery with less strict conditions, here ‖Γi‖s0,∞ has not
dependence on the magnitude of entries.

7https://arxiv.org/pdf/1607.08194.pdf
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Accuracy of multi-layer `1-regularizers (Sulam et al. 18’8)

Three layer networks with `1 regularization through (F)ISTA vs. a
six layer CNN (three layers convolutional layers followed by fully
connected layers). LISTA and LBP are variants also using `1

regularization.
8https://arxiv.org/pdf/1806.00701.pdf
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Union of randomized subspaces (Murray et al. 18’9)

Consider the data model where for fixed known {Di}Ni=1 and stripe
sparsity ‖Γi‖s0,∞ ≤ si for i = 1, ·,N the data is composed by

X = D1Σ1Γ1 + V0

Γ1 = D2Σ2Γ2 + V1

...

ΓN−1 = DNΣNΓN + VN−1 (2)

where Σi are diagonal matrices whose diagonal is composed of
randomly drawn ±1.
Introducing this randomness allows us to further weaken the
conditions on the coherence needed to guarantee recovery.

9https://ieeexplore.ieee.org/document/8439894
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Provable activation pathway recovery (Murray et al. 18’10)

Theorem hard thresholding)

Let X̂
(l−1)

be consistent with the D-CSC model (2null), with

‖V(l)‖P(l)

2,∞ ≤ ζl and ‖X(l)‖Q
(l)

0,∞ ≤ Sl for all l = 0, . . . , L− 1, and Σ(l)

diagonal matrices with independent Rademacher random variables.
Let denote as ZL the event that the activation path is successfully

recovered by hard thresholding Γ̂i = HSi

(
DT
i Γ̂i−1

)
. Then

P(Z̄L) ≤ 2dM
L∑

l=1

nl exp

− |X (l)
min|2

8
(
|X (l)

max |2µ2
l Sl + ζ2

l−1

)
 .

Where X (0) ∈ RM×d and filters at layer l are of length nl .

The derived probability bound scales proportional to µ−2
l across a

given layer, rather than µ−1
l

10https://ieeexplore.ieee.org/document/8439894
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One step thresholding: average sign pattern [ScVa07]

Input: y , D and k (number of nonzeros in output vector).
Algorithm: Set Λ the index set of the k ≤ m largest in |D∗y |
Output the n-vector x whose entries are

xΛ = (D∗ΛDΛ)−1DΛy and x(i) = 0 for i /∈ Λ.

Theorem

Let y = Dx0, with the columns of D having unit `2 norm, the sign
of the nonzeros in x0 selected randomly from ±1 independent of D,
and

‖x0‖`0 < (128 log(2n/ε))−1ν2
∞(x0)µ−2

2 (D),

then, with probability greater than 1− ε, the Thresholding decoder
with k = ‖x0‖`0 will return x0.
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One step thresholding: average sign pattern (proof, pg. 1)

Theorem (Rademacher concentration)

Fix a vector α. Let ε be a Rademacher series, vector with entries
drawn uniformly from ±1, of the same length as α, then

Prob

(∣∣∣∣∣∑
i

εiαi

∣∣∣∣∣ > t

)
≤ 2 exp

(
−t2

32‖α‖2
2

)
Let Λ := supp(x0). Thresholding fail to recover x0 if

maxi /∈Λ|d∗i y | > min
i∈Λ
|d∗i y |.

Prob

(
maxi /∈Λ|d∗i y | > p and min

i∈Λ
|d∗i y | < p

)
≤

Prob (maxi /∈Λ|d∗i y | > p) + Prob

(
min
i∈Λ
|d∗i y | < p

)
=: P1 + P2
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One step thresholding: average sign pattern (proof, pg. 2)

P1 = Prob (maxi /∈Λ|d∗i y | > p)

≤
∑
i /∈Λ

Prob (|d∗i y | > p)

=
∑
i /∈Λ

Prob

∣∣∣∣∣∣
∑
j∈Λ

x0(j)(d∗i dj)

∣∣∣∣∣∣ > p


≤ 2

∑
i /∈Λ

exp

(
−p2

32
∑

j∈Λ |x0(j)|2|d∗i dj |2

)

≤ 2(n − k) exp

(
−p2

32k‖x0‖2
∞µ

2
2(D)

)
.
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One step thresholding: average sign pattern (proof, pg. 3)

P2 = Prob

(
min
i∈Λ
|d∗i y | < p

)

≤ Prob

min
i∈Λ
|x0(i)| −maxi∈Λ

∣∣∣∣∣∣
∑

j∈Λ,j 6=i

x0(j)(d∗i dj)

∣∣∣∣∣∣ < p


≤

∑
i∈Λ

Prob

∣∣∣∣∣∣
∑

j∈Λ,j 6=i

x0(j)(d∗i dj)

∣∣∣∣∣∣ > min
i∈Λ
|x0(i)| − p


≤ 2

∑
i∈Λ

exp

(
−(mini∈Λ |x0(i)| − p)2

32
∑

j∈Λ,j 6=i |x0(j)|2|d∗i dj |2

)

≤ 2k exp

(
−(mini∈Λ |x0(i)| − p)2

32k‖x0‖2
∞µ

2
2(D)

)
.
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One step thresholding: average sign pattern (proof, pg. 4)

Balance P1 and P2 by setting p := mini∈Λ |x0(i)|/2:

P1 + P2 ≤ 2n exp

(
−(mini∈Λ |x0(i)|)2

128k‖x0‖2
∞µ

2
2(D)

)
≤ 2n exp

(
−ν∞(x0)2

128kµ2
2(D)

)
.

Setting this bound on the probability of failure equal to ε and
solving for k yields the conclusion of the proof.

I Similar work for matching pursuit by Schnass, `1 by Tropp,
and in Statistical RICs

I Stronger uniform statements we need more than coherence.
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Deep convolutional sparse coding: summary

I By constructing a union of subspace data model we can
employ methods of analysis developed by the compressed
sensing community.

I Data of this type provably have the activations one would
expect based on the data construction.

I Recovery is possible for nonlinear activations which include:
soft or hard thresholding as well as `1-regularization.

I The data model isn’t as rich as we would hope as it is linear

I Recovery guarantees scale poorly with depth and are based on
coherence between filters which are not small for local
convolutional filters; recall Grassmann frame bounds.

I Open questions include the role of activations, learning the
features, and building in structure within and between labels.
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