Qutline for today

» Introduction to the scattering transform: repeated application
of a fixed transform

» Translation and deformation as examples of invariance sought
for classification

> Wavelet transform as time-frequency tilings

> Properties of the scattering transform: Energy preservation
and deformation invariance in the limit

» Examples of scattering transform energy decay and
classification
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Transform (Mallat 12'1)

The Scattering Transform repeatedly applied a deterministic

wavelet transform followed by o(x) = |x| as nonlinear activation
f

Sy01f = f*oy

UIS = 1f * o]
0,

UlA1, A2, As]f

Figure 1: A scattering propagator U, applied to f computes each U[\]f =
| f*1a, | and outputs S, [0] f = f*¢pos. Applying U, to each U[A\]f computes
all U[Aq, A2]f and outputs S;[A\] = U[\] * ¢pos. Applying iteratively U, to
each Ulp]f outputs S;[plf = Ulplf * ¢p2s and computes the next path layer.

Depth allows the transform to become increasingly invariant to
translation and small diffeomorphisms.

"https://arxiv.org/pdf/1101.2286.pdf
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Classification as learning invariance (Mallat '13?)

Invariance to translations x. (%)

= x(t — <)
Ve e R, P(x.) = P(x) -

O A
we () f\ (\ . A

®(z) = |#(w)| : Fourier Modulus

R w
P(2c) = [Zc(w)
0 w
Lipschitz stable to deformations x,(t) = x(t — 7(t))
small deformations of x —

small modifications of ®(x)

vr o, |

|2l — )l = © swp V@) 2] |

deformation size
http://1lcsl.mit.edu/ldr-workshop/Home . html
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Linearising deformations (Mallat '133%)

o Specific deformation invariance must be learned.

Supervised learning;

Translation orbits

¢ (two-dimensional
# ) | : -\J\f\/\
4 b ¢
oy Invariant to translations
K ?Linearizes” deformations

q;
¥
Deformation orbits
(high dimensional)
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Linearising deformations (Mallat '13%)

o Specific deformation invariance must be learned.

Supervised learning:

Translation orbits
(two-dimensional)

%q‘ 4‘/‘*‘[\‘\/\ (I)

) Invariant to translations Py

4 Y Linearizes” deformations "¢ eriant
to deformations

24
Deformation orbits
(high dimensional)
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Linearising deformations (Mallat '13°)

e Specific deformation invariance must be learned.

Supervised learning;

J Translation orbits
¢ (two-dimensional)

()

nvariant to translations Vi
8/\/ I iant lati Pyl
g ¢

»Linearizes” deformations "1 Mvariant

e to deformations
Discriminant
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Wavelet Transform as frequency tiling (Mallat '13°)
e Complex wavelet: 1(t) = ¢®(t) +i°(t)
o Dilated: o (t) =277 ¢(277t) with A =277 .

wem (2200

30*1/)/\@) tA
Unitary: [[Wz|? = |=|?*.

®http://1lcsl.mit.edu/ldr-workshop/Home .html
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Modulus and averaging in wavelet domain (Mallat '137)

|z %y, | * o(t)

¢ The modulus |z * 1), | is a regular envelop

o The average |z x ¥y, | x ¢(t) is invariant to small translations

relatively to the support of ¢.

o Full translation invariance at the limit:

i, £ = / o, ()] s = [l

"http://lcsl.mit.edu/ldr-workshop/Home.html
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Second layer of the scattering transform (Mallat '138)

’x*¢>\1’

|:L‘ *(*' A ‘ * O

e The high frequencies of |z x 9y, | are in wavelet coefficients:

B |z x Py, | % B(t)
Wﬂ$*¢hw_<|x*¢h|*¢hﬁ)>tk

¢ Translation invariance by time averaging the amplitude:

V)\la)@? H‘r*d})\ly*d})\zy*¢<t)

®http://1lcsl.mit.edu/ldr-workshop/Home .html
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Scattering transform (Mallat '13°)

TxQ x

Wi

[z %y, | %0 @A

b A A
waww 1 ) 9 9 9 9

e Cascade of contractive operators

[Wele = [Wila'l| < fle =2l with |[[Wla]l = ] .

*http://lcsl.mit.edu/ldr-workshop/Home .html
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Scattering transform properties(Mallat '1319)

2% (1)
2 %6, | G(u)
So= | llastal % o)
llz 20 ] 70 5 g | % (1)

UALAZ G
Theorem: For appropriate wavelets, a scattering is
contractive ||Sxz — Sy|| < ||z —y|
preserves norms ||Sz|| = ||z||
stable to deformations x.(t) = x(t — 7(t))
[leka = e ST el

= linear discriminative classification from ®x = Sz
Opttp://1lcsl.mit.edu/ldr-workshop/Home . html
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Scattering Transform: energy decay (Mallat 12'11)

For suitably chosen wavelet transforms (see Theorem 2.6 in foot-
note) then for all f € L?(RY)

IUIATIF|I? = lim Z 1SS IASIF1? = 0

lim
m—00

where U[A|f = |f x¢5| and S,[A]f = ¢; x U[A]f and [|S,[P,]f|| =
|I£]l. Morevover, for all c € R?

lim HS_/[PJ]f = SJ[PJ]LCf” =0
J—oo

where L.f = f(x — c) is the translation operator.

Unttps://arxiv.org/pdf/1101.2286.pdf
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Scattering Transform: energy decay (Mallat 13'1?)

TABLE 1
Percentage of Energy 3" o [[S[plal|’/[lz|* of
Scattering Coefficients on Frequency-Decreasing Paths
of Length m, Depending upon J

m=0 m=1 m=2 m=3 m=4|m<3
95.1 4.86 - - - 99.96
8756 1197 0.35 - - 99.89
7629 2192 1.54 0.02 - 99.78

61.52 3387 4.05 0.16 0 99.61
44.6 45.26 8.9 0.61 0.01 99.37
2615 57.02 14.4 1.54 0.07 99.1

0 7337 2198 3.56 0.25 98.91

These average values are computed on the Caltech-101 database, with
Zero mean and unit variance images.

O Tk W N |y

pttps://www.di.ens.fr/data/publications/papers/pami-final.pdf

Theories of DL Lecture 6 The Scattering Transform: a deterministic transform with depth


https://www.di.ens.fr/data/publications/papers/pami-final.pdf

Scattering Transform: MNIST classification (Mallat 13'3)

TABLE 4
Percentage of Errors of MNIST Classifiers, Depending on the Training Size

Training T Wind. Four. | Scat.m=1 | Seat. m=2 | Conv.
size | PCA SVM | PCA SVM | PCA SVM | PCA SVM | Net.
00 | 145 14| 73H T4 5T 8 [ 4T b6 | TR
1000 | 72 82 [374 37423 4 |23 26|32
000 | 58 65029 29|17 26 |13 18 | 233
500 |49 4 234 22| L6 16 | 103 14 | 152
10000 | 455 311]224 165 15 123108 1 | 085
20000 | 425 22 | 192 L1314 096 | 079 0.58 | 0.76
40000 | 41 17 |18 09 | 136 075 | 074 053 | 0.65
60000 | 43 14 | 180 08 | 134 062 | 0.7 043 ] 053

Bhttps://www.di.ens.fr/data/publications/papers/pami-final.pdf
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Scattering Transform: MNIST digit 3 (Mallat 13')

) b Y

Fi, 7. e mags X{u) of adih*3." 1) Aneys of wincowe scaterng coeficens Sp 1) ofoerm = 1wt sampled at el of ' = §
pies. c) Winoowe scatering oeficients Sl of oder m =2,
“https://www.di.ens.fr/data/publications/papers/pami-final.pdf
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