Qutline for today

v
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Parameters where negative eigenvalues occur
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Loss function for a simple two layer net

Consider a data set X € R™™ of m data entries in R"” and
associated target outputs (such as labels) Y € R"™*™ (for
simplicity we let n, = n). Also consider a (very) simple two layer
net:

h = o(WWx) note, no bias, and o(-) = max(0, )
hy = W(2)h1 note, no bias or nonlinear activation.

The output of the net is H(x,; ) = 7, and we measure the value
of the net through the average sum of squares:

L=@m) YD iy = vig)
p=1i=1

and define a weighted loss accuracy as € = n~1L.
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Hessian for two layer net (without activation)

Let e, = Vi, — yiu be the error in the ith entry of the output for
data entry indexed by u, and 6 = {W(l), W(2)} € R2" be the net
parameters, then the hessian of the loss function has entries

%L
H Y=
T 90,004
with positive semi-definite and error dependent components:

_ 09i 1, OFi. _
[Floap :=m 122 o0, a0, ~ " 1 s

p=1i=1
m n 62)7'
Hilo g = -1 i DR
o = m ;;evﬂaaaaeﬂ

Note, there are mn data entries to fit and 2n? parameters in the
network. Let ¢ = 2n?/mn = 2n/m to measure the relative over
(¢ > 1) or under (¢ < 1) parameterization.
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Loss function landscape through Hessian eigenvalues

Functions, say £, which have hessians that are:

» positive definite (all positive eigenvalues) are convex and have
a single global minima and unique minimiser,

> positive semi-definite have single global minima but
non-unique minimiser due to the null-space

» indefinite (positive and negative eigenvalues) are non-convex
and may be a complicated landscape with multiple local
minimisers.

For the simple two layer network we considered the network has
Hessian H = Hy + H; with Hp positive semidefinite and of size
independent of the error, while H; is indefinite with magnitude
depending on the size of e; ,, = Vi ,, — Vi .-
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Viewing the landscape through random matrix theory

(Pennington et al. 17'1)

One can interpret properties of the landscape through the Hessian
by considering simplified models:

» The weights are i.i.d. random normal variable,

» The data are i.i.d. random variables,

» The residuals e; , = y; , — yi, are normal random variables,
say N(0,2¢) with e = n=1£ (which also allows the gradient to
vanish as m — oo,

» The matrices Hy and H; are freely independent which allows
us to compute the spectra of Hy + H; from their individual
spectra.

'http://proceedings.mlr.press/v70/penningtoni7a.html
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Wigner and Wishart distributions

Wigner matrices, entries drawn A(0,0?), have eigenvalues drawn
from the semi-circle law:

2mo?

0 otherwise

1 2 2 H
4 A flAl <2
psc()‘)__{ 7 IH_ 7

Wishart matrices, X = JJT product of J € R"*P drawn
N (0,02 /p) have eigenvalues drawn from the Marchenko-Pastur
distribution:

B (\) ifog=n/p<1
pmp(A) = { fl — ¢ 15N\ + p(N\) otherwisep

where p(A) := (21Acd) "1/ (A — A2)(As — ) for A € [A_, A4]
and Ay == o(1 £9)2
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Stieltjes and R Transforms of probability distributions

The probability distribution of the sum of two (freely independent)
random matrix distributions can be calculated using the transforms:

“https:
//terrytao.wordpress.com/tag/stieltjes-transform-method/

For z € C/R the Stieltjes Transform, G,(z), of a probability distri-
bution and its inverse are given by

_ p(t) R .
Gy(2) _/R—Z_ tdt and  p(\) = —7 elr& Imag(G,(\ + ie)).
The Stieltjes and R Transform of p are related by the solutions of
R,(Gp(z)) +1/Gy(z) = z and has the property that if p; and po
are freely independent then R, 1, = R, + Ry,.

v
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Recall the Hessian for two layer net (without activation)

Let e, = Vi, — yiu be the error in the ith entry of the output for
data entry indexed by u, and 6 = {W(l), W(2)} € R2" be the net
parameters, then the hessian of the loss function has entries
0L
H,
B 90,005

with positive semi-definite and error dependent components:

_ i 09, _
[Fola, := m IZZ o0, o, ~ " 1 s

p=1i=1

=: Ho + Hi

1 0?Jiu
[Fhlapi=m ZZ i 90,005

p=1i=1
Where we assumed that Hy and H; can be modelled as being
drawn from Wishart and Wigner distributions respectively.
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Modelling the landscape through random matrix theory

(Pennington et al. 17'2)

Using the Pennington model (¢ = 2n/m and € = n=1£) we have
pHy(A) = pup (X 1,9) and pr (A) = psc(; V2e).
Their R transforms are respectively

1

Rib =135

and RHl = 262,

from which follows the probability distribution, py(\; €, ¢):
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Figure 1. Spectral distributions of the Wishart + Wigner approximation of the Hessian for three different ratios of parameters to data
points, ¢. As the energy e of the critical point increases, the spectrum becomes more semicircular and negative eigenvalues emerge.

http://proceedings.mlr.press/v70/penningtoni7a.html
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Fraction of negative eigenvalues (Pennington et al. 17'3)

Consider the fraction of negative eigenvalues of py(A):

0
ale.d) = / pr(Ni € 6)dA

—00

“http://proceedings.mlr.press/v70/penningtoni7a.html

For pr(X) modelling the Hessian of the two layer net, when « is
small it is well approximated by

e—c. 3/2

a(e, ¢) = ao(9)

€c

where

116(1—20¢ 802 + (14 8¢)%/?).

€c =

*http://proceedings.mlr.press/v70/penningtoni7a.html
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The two layer ReLU net (Pennington et al. 17'%)

The introduction of the ReLU nonlinear activation changes the
Hessian, roughly setting to zero half of the entries and generating
a block off-diagonal structure in H; with Ry1(z) = 2_56(’;2222.
Continuing to model Hy as Wishart (less clear an assumption):

“http://proceedings.mlr.press/v70/penningtoni7a.html
For py(A) modelling the Hessian of the two layer net, when « is
small it is well approximated by

e — e |32

where

a(e, ¢) ~ do(¢)

€c
02(27 — 18¢ — €2 4 8¢3/?)
32¢(1 — ¢)3 ’

*http://proceedings.mlr.press/v70/penningtoni7a.html
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€c =

with & =1+ 16¢ — 8¢°.
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Empirical values of ¢, and a (Pennington et al. 17°)

-~ 3(1-9)
— L-of

\

(a) Index of critical points versus energy (b) Energy of minimizers versus parameters/data points

Figure 6. Empirical observations of the distribution of critical points in single-hidden-layer tanh networks with varying ratios of param-
eters to data points, ¢. (a) Each point represents the mean energy of critical points with index o, averaged over ~200 training runs. Solid
lines are best fit curves for small o &~ age — 65‘3/ %, The good agreement (emphasized in the inset, which shows the behavior for small
a) provides support for our theoretical prediction of the /2 scaling. (b) The best fit value of ¢, from (a) versus ¢. A surprisingly good fit
is obtained with ¢, = %(1 — ¢)". Linear networks obey e, = %(1 — ¢). The difference between the curves shows the benefit obtained
from using a nonlinear activation function.

*http://proceedings.mlr.press/v70/penningtoni7a.html
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