Outline for today

- ► Model of the Hessian for sum of squares loss function for two layer fully connected random net
- Random matrix theory models for the Hessian
- Introduction to Wishart and Wigner random matrices
- ightharpoonup Stieltjes and ${\cal R}$ Transform for summing distributions
- Parameters where negative eigenvalues occur

Loss function for a simple two layer net

Consider a data set $X \in \mathbb{R}^{n \times m}$ of m data entries in \mathbb{R}^n and associated target outputs (such as labels) $Y \in \mathbb{R}^{n_2 \times m}$ (for simplicity we let $n_2 = n$). Also consider a (very) simple two layer net:

$$h_1 = \sigma(W^{(1)}x_0)$$
 note, no bias, and $\sigma(\cdot) = \max(0, \cdot)$
 $h_2 = W^{(2)}h_1$ note, no bias or nonlinear activation.

The output of the net is $H(x_{\mu}; \theta) = \hat{y}_{\mu}$ and we measure the value of the net through the average sum of squares:

$$\mathcal{L} = (2m)^{-1} \sum_{\mu=1}^{m} \sum_{i=1}^{n} (\hat{y}_{i,\mu} - y_{i,\mu})^{2}$$

and define a weighted loss accuracy as $\epsilon = n^{-1}\mathcal{L}$.

Hessian for two layer net (without activation)

Let $e_{i,\mu}=\hat{y}_{i,\mu}-y_{i,\mu}$ be the error in the i^{th} entry of the output for data entry indexed by μ , and $\theta=\{W^{(1)},W^{(2)}\}\in\mathbb{R}^{2n^2}$ be the net parameters, then the hessian of the loss function has entries

$$H_{\alpha,\beta} = \frac{\partial^2 \mathcal{L}}{\partial \theta_{\alpha} \partial \theta_{\beta}} =: H_0 + H_1$$

with positive semi-definite and error dependent components:

$$[H_0]_{\alpha,\beta} := m^{-1} \sum_{\mu=1}^m \sum_{i=1}^n \frac{\partial \hat{y}_{i,\mu}}{\partial \theta_{\alpha}} \frac{\partial \hat{y}_{i,\mu}}{\partial \theta_{\beta}} = m^{-1} [JJ^T]_{\alpha,\beta}$$
$$[H_1]_{\alpha,\beta} := m^{-1} \sum_{\mu=1}^m \sum_{i=1}^n e_{i,\mu} \frac{\partial^2 \hat{y}_{i,\mu}}{\partial \theta_{\alpha} \partial \theta_{\beta}}.$$

Note, there are mn data entries to fit and $2n^2$ parameters in the network. Let $\phi = 2n^2/mn = 2n/m$ to measure the relative over $(\phi > 1)$ or under $(\phi < 1)$ parameterization.

Loss function landscape through Hessian eigenvalues

Functions, say \mathcal{L} , which have hessians that are:

- positive definite (all positive eigenvalues) are convex and have a single global minima and unique minimiser,
- positive semi-definite have single global minima but non-unique minimiser due to the null-space
- indefinite (positive and negative eigenvalues) are non-convex and may be a complicated landscape with multiple local minimisers.

For the simple two layer network we considered the network has Hessian $H=H_0+H_1$ with H_0 positive semidefinite and of size independent of the error, while H_1 is indefinite with magnitude depending on the size of $e_{i,\mu}=\hat{y}_{i,\mu}-y_{i,\mu}$.

Viewing the landscape through random matrix theory (Pennington et al. 17^{1})

One can interpret properties of the landscape through the Hessian by considering simplified models:

- ► The weights are i.i.d. random normal variable,
- ► The data are i.i.d. random variables,
- ▶ The residuals $e_{i,\mu} = \hat{y}_{i,\mu} y_{i,\mu}$ are normal random variables, say $\mathcal{N}(0, 2\epsilon)$ with $\epsilon = n^{-1}\mathcal{L}$ (which also allows the gradient to vanish as $m \to \infty$,
- ▶ The matrices H_0 and H_1 are freely independent which allows us to compute the spectra of $H_0 + H_1$ from their individual spectra.

¹http://proceedings.mlr.press/v70/pennington17a.html

Wigner and Wishart distributions

Wigner matrices, entries drawn $\mathcal{N}(0, \sigma^2)$, have eigenvalues drawn from the semi-circle law:

$$\rho_{sc}(\lambda) = \begin{cases} \frac{1}{2\pi\sigma^2} \sqrt{4\sigma^2 - \lambda^2} & \text{if } |\lambda| \leq 2\sigma \\ 0 & \text{otherwise} \end{cases}$$

Wishart matrices, $X = JJ^T$ product of $J \in \mathbb{R}^{n \times p}$ drawn $\mathcal{N}(0, \sigma^2/p)$ have eigenvalues drawn from the Marchenko-Pastur distribution:

$$\rho_{MP}(\lambda) = \left\{ \begin{array}{ll} \rho(\lambda) & \text{if } \phi = n/p < 1 \\ (1 - \phi^{-1})\delta(\lambda) + \rho(\lambda) & \text{otherwise} \end{array} \right.$$

where $\rho(\lambda) := (2\pi\lambda\sigma\phi)^{-1}\sqrt{(\lambda-\lambda_-)(\lambda_+-\lambda)}$ for $\lambda \in [\lambda_-,\lambda_+]$ and $\lambda_{\pm} := \sigma(1\pm\sqrt{\phi})^2$.

Stieltjes and ${\mathcal R}$ Transforms of probability distributions

The probability distribution of the sum of two (freely independent) random matrix distributions can be calculated using the transforms:

Stieltjes and $\mathcal R$ Transforms

ahttps:

//terrytao.wordpress.com/tag/stieltjes-transform-method/

For $z \in \mathbb{C}/\mathbb{R}$ the Stieltjes Transform, $G_{\rho}(z)$, of a probability distribution and its inverse are given by

$$G_{
ho}(z) = \int_{\mathbb{R}} rac{
ho(t)}{z-t} dt \quad ext{ and } \quad
ho(\lambda) = -\pi^{-1} \lim_{\epsilon o 0_+} ext{Imag}(G_{
ho}(\lambda+i\epsilon)).$$

The Stieltjes and \mathcal{R} Transform of ρ are related by the solutions of $\mathcal{R}_{\rho}(G_{\rho}(z)) + 1/G_{\rho}(z) = z$ and has the property that if ρ_1 and ρ_2 are freely independent then $\mathcal{R}_{\rho_1+\rho_2} = \mathcal{R}_{\rho_1} + \mathcal{R}_{\rho_2}$.

Recall the Hessian for two layer net (without activation)

Let $e_{i,\mu}=\hat{y}_{i,\mu}-y_{i,\mu}$ be the error in the i^{th} entry of the output for data entry indexed by μ , and $\theta=\{W^{(1)},W^{(2)}\}\in\mathbb{R}^{2n^2}$ be the net parameters, then the hessian of the loss function has entries

$$H_{\alpha,\beta} = \frac{\partial^2 \mathcal{L}}{\partial \theta_{\alpha} \partial \theta_{\beta}} =: H_0 + H_1$$

with positive semi-definite and error dependent components:

$$[H_0]_{\alpha,\beta} := m^{-1} \sum_{\mu=1}^m \sum_{i=1}^n \frac{\partial \hat{y}_{i,\mu}}{\partial \theta_{\alpha}} \frac{\partial \hat{y}_{i,\mu}}{\partial \theta_{\beta}} = m^{-1} [JJ^T]_{\alpha,\beta}$$

$$[H_1]_{\alpha,\beta} := m^{-1} \sum_{\mu=1}^m \sum_{i=1}^n e_{i,\mu} \frac{\partial^2 \hat{y}_{i,\mu}}{\partial \theta_\alpha \partial \theta_\beta}.$$

Where we assumed that H_0 and H_1 can be modelled as being drawn from Wishart and Wigner distributions respectively.

Modelling the landscape through random matrix theory (Pennington et al. 17'2)

Using the Pennington model ($\phi = 2n/m$ and $\epsilon = n^{-1}\mathcal{L}$) we have $\rho_{H_0}(\lambda) = \rho_{MP}(\lambda; 1, \phi)$ and $\rho_{H_1}(\lambda) = \rho_{SC}(\lambda; \sqrt{2\epsilon})$. Their R transforms are respectively

$$\mathcal{R}_{H_0} = rac{1}{1-z\phi} \quad ext{ and } \quad \mathcal{R}_{H_1} = 2\epsilon z,$$

from which follows the probability distribution, $\rho_H(\lambda; \epsilon, \phi)$:



Figure 1. Spectral distributions of the Wishart + Wigner approximation of the Hessian for three different ratios of parameters to data points, ϕ . As the energy ϵ of the critical point increases, the spectrum becomes more semicircular and negative eigenvalues emerge.

Theories of DL Lecture 7

²http://proceedings.mlr.press/v70/pennington17a.html

Fraction of negative eigenvalues (Pennington et al. 17'3)

Consider the fraction of negative eigenvalues of $\rho_H(\lambda)$:

$$\alpha(\epsilon,\phi) := \int_{-\infty}^{0} \rho_{H}(\lambda;\epsilon,\phi) d\lambda.$$

Fraction of negative eigenvalues (without ReLU)^a

ahttp://proceedings.mlr.press/v70/pennington17a.html

For $\rho_H(\lambda)$ modelling the Hessian of the two layer net, when α is small it is well approximated by

$$\alpha(\epsilon, \phi) \approx \alpha_0(\phi) \left| \frac{\epsilon - \epsilon_c}{\epsilon_c} \right|^{3/2}$$

where

$$\epsilon_c = \frac{1}{16}(1 - 20\phi - 8\phi^2 + (1 + 8\phi)^{3/2}).$$

³http://proceedings.mlr.press/v70/pennington17a.html

The two layer ReLU net (Pennington et al. 17'4)

The introduction of the ReLU nonlinear activation changes the Hessian, roughly setting to zero half of the entries and generating a block off-diagonal structure in H_1 with $\mathcal{R}_{H1}(z) = \frac{\epsilon \phi z}{2 - \epsilon \phi^2 z^2}$. Continuing to model H_0 as Wishart (less clear an assumption):

Fraction of negative eigenvalues (with ReLU)^a

ahttp://proceedings.mlr.press/v70/pennington17a.html

For $\rho_H(\lambda)$ modelling the Hessian of the two layer net, when α is small it is well approximated by

$$\alpha(\epsilon,\phi) pprox \tilde{lpha}_0(\phi) \left| rac{\epsilon - \epsilon_c}{\epsilon_c}
ight|^{3/2} \quad ext{ where}$$

$$\epsilon_c = \frac{\sigma^2 (27 - 18\xi - \xi^2 + 8\xi^{3/2})}{32\phi (1 - \phi)^3}, \text{ with } \xi = 1 + 16\phi - 8\phi^2.$$

Theories of DL Lecture 7 Random matrix theory as a view on deep nets: loss surface

⁴http://proceedings.mlr.press/v70/pennington17a.html

Empirical values of ϵ_c and α (Pennington et al. 17'5)

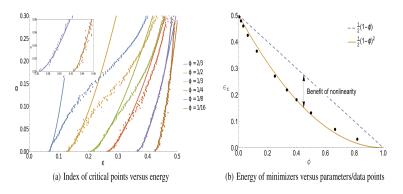


Figure 6. Empirical observations of the distribution of critical points in single-hidden-layer tanh networks with varying ratios of parameters to data points, ϕ . (a) Each point represents the mean energy of critical points with index α , averaged over ~200 training runs. Solid lines are best fit curves for small $\alpha \approx \alpha_0 | \epsilon - \epsilon_c|^{3/2}$. The good agreement (emphasized in the inset, which shows the behavior for small α) provides support for our theoretical prediction of the $^3/_2$ scaling. (b) The best fit value of ϵ_c from (a) versus ϕ . A surprisingly good fit is obtained with $\epsilon_c = \frac{1}{2}(1-\phi)^2$. Linear networks obey $\epsilon_c = \frac{1}{2}(1-\phi)$. The difference between the curves shows the benefit obtained from using a nonlinear activation function.

⁵http://proceedings.mlr.press/v70/pennington17a.html