
Review of Lecture 7: random matrix theory view of loss
function (Pennington et al. 17’1)

Let ei ,µ = ŷi ,µ − yi ,µ be the error in the i th entry of the output for

data entry indexed by µ, and θ = {W (1),W (2)} ∈ R2n2 be the net
parameters, then the hessian of the sum of squares loss function
has entries

Hα,β =
∂2L

∂θα∂θβ
=: H0 + H1

with H0 positive semi-definite and H1 indefinite.
Modelling H0 and H1 as Wishart and Wigner respectively, the
additive spectra can be computed and fraction of non-negative
eigenvalues determined along with point where 2n/m and n−1L
predict the loss function is convex.

1http://proceedings.mlr.press/v70/pennington17a.html
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Outline for today

I Jacobian of the feed forward deep net, length propagation.

I Stability or exponential growth/shrinkage of length with
depth; computation of the spectra through S Transform

I Role of nonlinear activations and length fixed point maps.

I Deep spectra and distributions of the activation derivatives

I Classes of universality in the spectra for diverse activation
functions.
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Jacobian of deep net

Consider a fully connected L layer deep net given by

h(`) = φ(ĥ(`)) with ĥ(`) = W (`)h(`−1) + b(`)

for ` = 1, . . . , L with nonlinear activation φ(·) and W (`) ∈ RN×N .

Its Jacobian is given by

J =
∂h(L)

∂x (0)
= ΠL

`=1D
(`)W (`)

where D(`) is diagonal with entries D
(`)
ii = φ′(ĥ

(`)
i ).

We further consider the case of a random net, W (`) and b(`) drawn
from specified distributions, and investigate how the `2 length of
input vectors change as they are propagated through the net.

Theories of DL Lecture 8 Random matrix theory as a view on deep nets: trainability



Length propagation (Poole et al. 16’2)

Let q` = N−1‖h(`)‖22 be the average squared `2 length of the
pre-activation ĥ(`) = W (`)h(`−1) + b(`) at layer `.

Treating the model of W (`) and b(`) being drawn from N (0, σ2w )
and N (0, σ2b) respectively, we can express the evolution of the
length as

q(`) = σ2wN
−1‖φ(ĥ(`−1))‖22 + σ2b.

Replacing the average squared length N−1‖ · ‖22 for large N by the
squared integral we could instead consider the propagation

q(`) := σ2w

∫
(2π)−1/2φ

(√
q(`−1)z

)2

e−z
2/2dz + σ2b.

2https://arxiv.org/pdf/1606.05340.pdf
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Length propagation fixed point (Poole et al. 16’3)

The average squared length q` = N−1‖h(`)‖22 of the pre-activation
following the recursion

q(`) := σ2w

∫
(2π)−1/2φ

(√
q(`−1)z

)2

e−z
2/2dz + σ2b.

has a fixed point q? = σ2w
∫

(2π)−1/2φ
(√

q(?)z
)2

e−z
2/2dz + σ2b

whose stability governs the ability of the network to train. In fact,
the growth of a perturbation is given by the largest singular value
of JT J, that is ‖Ju‖22/‖u‖22 which is given by

χ = σ2w

∫
(2π)−1/2φ′

(√
q(?)z

)2

e−z
2/2dz .

3https://arxiv.org/pdf/1606.05340.pdf
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Stability of pre-activation lengths (Pennington et al. 18’4)

4https://arxiv.org/pdf/1802.09979.pdf

Theories of DL Lecture 8 Random matrix theory as a view on deep nets: trainability

https://arxiv.org/pdf/1802.09979.pdf


Spectrum of the Jacobian pt. 1 (Pennington et al. 18’5)

Recall the input-output Jacobian is given by

J =
∂h(L)

∂x (0)
= ΠL

`=1D
(`)W (`)

where D(`) is diagonal with entries D
(`)
ii = φ′(h

(`)
i ).

Stieltjes and S Transforms

For z ∈ C/R the Stieltjes Transform, Gρ(z), of a probability distri-
bution and its inverse are given by

Gρ(z) =

∫
R

ρ(t)

z − t
dt and ρ(λ) = −π−1 lim

ε→0+
Imag(Gρ(λ+ iε)).

The Stieltjes Transform and moment generating function are related
by Mρ(z) := zGρ(z)−1 =

∑∞
k=1

mk

zk
, and the S Transform is defined

as Sρ(z) = 1+z
zM−1

ρ (z)
. The S Transform has the property that if ρ1

and ρ2 are freely independent then Sρ1ρ2 = Sρ1Sρ2 .
5https://arxiv.org/pdf/1802.09979.pdf
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Spectrum of the Jacobian pt. 2 (Pennington et al. 18’6)

Recall the input-output Jacobian is given by

J =
∂h(L)

∂x (0)
= ΠL

`=1D
(`)W (`)

where D(`) is diagonal with entries D
(`)
ii = φ′(ĥ

(`)
i ).

The S Transform of JJT is then given by

SJJT = SLD2SLWTW .

This can be computed through the moments MJJT (z) =
∑∞

k=1
mk

zk
,

MD2(z) =
∑∞

k=1
µk
zk

, and SWTW = σ−2w

(
1 +

∑∞
k=1 skz

k
)

where

µk =
∫

(2π)−1/2φ′
(√

q(?)z
)2k

e−z
2/2dz .

In particular: m1 = (σ2wµ1)L and σ2wµ1 = χ is the growth factor we
observed before for which χ = 1 has controlled growth through the
layers..

6https://arxiv.org/pdf/1802.09979.pdf
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Nonlinear activation stability (Pennington et al. 18’7)

Where MD2(z) =
∫

(2π)−1/2
φ′
(√

q(?)z
)2

z−φ′
(√

q(?)z
)2 e
−z2/2dz and for W

Gaussian s1 = −1 where as for W orthogonal s1 = 0. Note that for
all nonlinear activations for µ1σ

2
w = 1, σ2

JJT
grows linearly with L.

Linear φ(·): q∗ = σ2wq
∗ + σ2b, and fixed point (σw , σb) = (1, 0).

ReLU φ(·): q∗ = 1
2σ

2
wq
∗ + σ2b, and fixed point (σw , σb) = (

√
2, 0).

Hard Tanh and Erf have curves as fixed points χ(σw , σb).

7https://arxiv.org/pdf/1802.09979.pdf

Theories of DL Lecture 8 Random matrix theory as a view on deep nets: trainability

https://arxiv.org/pdf/1802.09979.pdf


Network variance control through depth (Abrol 19’)

The pre-activation output of networks converge to a zero-mean
Gaussian distribution with variance, q∗, specified by the nonlinear
activation, weight and bias variance, σw and σb respective.
The distribution of the network input-output spectrum has a mean
at layer d given by χd . Level curves of χ = 1 overcome the
exponential dependence on depth and allow training.

Initialisation on this curve allows training very deep networks, but
adding batch-normalization can causes complete inability to train.
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Deep spectra of Jacobian (Pennington et al. 18’8)

Linear Gaussian and ReLU exhibit greater growth in the spectra
with depth as compared to Hard Tahh and Erf.

8https://arxiv.org/pdf/1802.09979.pdf
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Nonlinear activation stability (Pennington et al. 18’9)

Where MD2(z) =
∫

(2π)−1/2
φ′
(√

q(?)z
)2

z−φ′
(√

q(?)z
)2 e
−z2/2dz and for W

Gaussian s1 = −1 where as for W orthogonal s1 = 0. Note that for
all nonlinear activations for µ1σ

2
w = 1, σ2

JJT
grows linearly with L.

Linear and ReLU have σ2
JJT

growing linearly with L (except linear
orthogonal where s1 = 0).
Hard Tanh and Erf: q∗(L) can be selected such that σ2

JJT

approaches a fixed value as L→∞.
9https://arxiv.org/pdf/1802.09979.pdf
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Distribution of activations φ′(z) (Pennington et al. 18’10)

10https://arxiv.org/pdf/1802.09979.pdf
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Distribution of Jacobian spectra (Pennington et al. 18’11)

11https://arxiv.org/pdf/1802.09979.pdf
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