
Lecture 8: spectra of deep net (Pennington et al. 18’1)

h(`) = φ(ĥ(`)) with ĥ(`) = W (`)h(`−1) + b(`)

has input to output Jacobian given by

J =
∂h(L)

∂x (0)
= ΠL

`=1D
(`)W (`)

where D(`) is diagonal with entries D
(`)
ii = φ′(ĥ

(`)
i ).

Stability: ‖H(x + δ; θ)− H(x ; θ)‖ ≤ ‖δ‖max‖J‖.

1https://arxiv.org/pdf/1802.09979.pdf
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Outline for today

I Backpropogation and the Pennington spectra

I Glorot (Xavier) initialisation to maintain variance through
depth

I Batch normalization as a learned way to control saturation

I Methods for learning the net parameters:
I Stochastic gradient descent (SGD)
I Polyak and Nesterov momentum
I AdaGrad and variants toward Adam
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Optimizing (learning) a deep net

The output of the net is H(xµ; θ) = ĥµ and we measure the value
of the net through the average sum of squares:

L(θ;X ,Y ) = (2m)−1
m∑
µ=1

n∑
i=1

(ĥi ,µ − yi ,µ)2

Central to the success of deep nets is the ability to learn the
parameters θ of the network to achieve good training error while
also avoiding overfitting so as to generalize well.

Backpropogation allows an efficient calculation of gradθL(θ;X ,Y ).
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Backpropogation

L(θ;X ,Y ) = (2m)−1
m∑
µ=1

n∑
i=1

(ĥi ,µ − yi ,µ)2

Letting δ` := ∂L
∂ĥ(`)

and as before D(`) the diagonal matrix with

D
(`)
ii = φ′(ĥ

(`)
i ) we have

δ` = D`(W (`))T δ`+1 and δL = D(L)gradh(L)L.

which gives the formula for computing the δ` for each layer as

δ` =
(

ΠL−1
k=`D

(k)(W (k))T
)
D(L)gradh(L)L.

and the resulting gradient gradθL with entries as

∂L
∂W (`)

= δ`+1 · hT` and
∂L
∂b(`)

= δ`+1
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Distribution of Jacobian spectra (Pennington et al. 18’2)

Recall the Jacobian of the input-output map

J =
∂h(L)

∂x (0)
= ΠL

`=1D
(`)W (`)

and contrast with gradient δ`

δ` =
(

ΠL−1
k=`D

(k)(W (k))T
)
D(L)gradh(L)L.

we see the matrices with the same spectra and limiting
distributions.

2https://arxiv.org/pdf/1802.09979.pdf
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Backpropogation: weight initialization (Glorot et al.’ 103)

An earlier, more empirical, perspective on the same issue of
vanishing/exploding gradients was considered by Xavier Glorot and
Yoshua Bengio (2010). They considered the same model
assumptions as Pennington, ĥ` being approximately N (0, σ2

` ) and:
“Our objective heres is to understand why standard gradient
descent from random initialization is doing so poorly with deep
neural networks.... Finally, we study how activations and gradients
vary across layers and during training, with the idea that training
may be more difficult when the singular values of the Jacobian
associated with each layer are far from 1.”

3http://proceedings.mlr.press/v9/glorot10a.html
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Backpropogation: weight initialization (Glorot et al.’ 104)

Glorot initialization follows from seeking the variance of both the
backpropogation gradient and forward activations to maintain the
same variance per layer: for W (`) ∈ Rn×n need σ2

w = 1/3n.

4http://proceedings.mlr.press/v9/glorot10a.html
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Batch normalization (Ioffe et al. 15’5)

Saturation in a deep net can alternatively be controlled in a more
learned manner by trying to shape the input to a nonlinear
activation to be with a learned mean and variance:

Typically included after a fully connected layer, before the nonlinear
activation. Performed independently per nonlinear activation, with
the γ and β learned as part of the net parameters θ.

5https://arxiv.org/pdf/1502.03167.pdf
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Batch normalization experiment (Ioffe et al. 15’6)

6https://arxiv.org/pdf/1502.03167.pdf
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Stochastic gradient descent (SGD)

Given a loss function L(θ;X ,Y ), gradient descent is given by

θ(k+1) = θ(k) − η · gradθL(θ,X ,Y )

where η is referred to as the stepsize, or in deep learning the
“learning rate.”
Recall, we typically have a loss function which is the sum of n
individual loss functions, independent for each data point:
L(θ;X ,Y ) = n−1

∑n
µ=1 l(θ; xµ, yµ)

For n� 1 gradient descent is computationally too costly and
instead one can break appart the n loss functions into
“mini-batches” and repeatedly solve

θ(k+1) = θ(k) − η|Λk |−1gradθ
∑
µ∈Λk

l(θ; xµ, yµ).

This is referred to as stochastic gradient descent as typically Λk is
chosen in some randomized method, usually as a partition of [n]
and a sequence of Λk which cover [n] is referred to as an “epoch.”
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Stochastic gradient descent: challenges and benefits

θ(k+1) = θ(k) − η|Λk |−1gradθ
∑
µ∈Λk

l(θ; xµ, yµ).

I SGD is preferable for large n as it reduces the per iteration
computational cost dependence on n to instead depend on
|Λk | which can be set by the user as opposed to n which is
given by the data set.

I SGD, and gradient descent, require selection of a learning rate
(stepsize) which in deep learning is typically selected using
some costly trial and error heuristics.

I The learning rate is typically chosen adaptively in a way that
satisfies

∑∞
k=1 ηk =∞ and

∑∞
k=1 η

2
k <∞; in particular as

ηk ∼ k−1.
I The optimal selection of learning weight, and selection of Λ,

depends on the unknown local Lipschitz constant
‖gradl(θ1; xµ, yµ)− gradl(θ2; xµ, yµ)‖ ≤ Lµ‖θ1 − θ2‖.
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SGD improvements: momentum

There are many improvements of stochastic gradient descent
typically used in practise for deep learning; particularly popular is
Polyak momentum:

θ(k+1) = θ(k) + β(θ(k) − θ(k−1))− α · gradθL
(
θ(k)

)
or Nesterov’s accelerated gradient:

θ̂k = θ(k) + β(θ(k) − θ(k−1))

θ(k+1) = θ̂(k) − α · gradθL
(
θ̂(k)

)
These acceleration methods give substantial improvements in the
linear convergence rate for convex problems; linear convergence

rates are: Normal GD κ−1
κ+1 , Polyak

√
κ−1√
κ+1

and NAG
√√

κ−1√
κ

.
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