Lecture 8: spectra of deep net (Pennington et al. 18'1)

O = (A1) with A = wOpE=1) 4 p(O)

has input to output Jacobian given by
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Qutline for today

v

Backpropogation and the Pennington spectra

v

Glorot (Xavier) initialisation to maintain variance through
depth

v

Batch normalization as a learned way to control saturation

v

Methods for learning the net parameters:

» Stochastic gradient descent (SGD)
» Polyak and Nesterov momentum
» AdaGrad and variants toward Adam
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Optimizing (learning) a deep net

The output of the net is H(x,;#) = h, and we measure the value
of the net through the average sum of squares:

L(6;X,Y) = (2m) IZZ i — Yip)?

p=1i=1

Central to the success of deep nets is the ability to learn the
parameters 0 of the network to achieve good training error while
also avoiding overfitting so as to generalize well.

Backpropogation allows an efficient calculation of gradyL(6; X, Y).
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Backpropogation
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p=1i=1

Letting §; := ‘?ﬁ)

DY) — /(A") we have

and as before D) the diagonal matrix with

0p = DK(W(E))T&H and §, = D(L)gradh<L)£.

which gives the formula for computing the §, for each layer as

8 = (nﬁ;;o(k)(w(k))T) DM grad, L.
and the resulting gradient grady L with entries as

Y . Y
W = 5g+1 . hg and W = 5(4_1
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Distribution of Jacobian spectra (Pennin

Recall the Jacobian of the input-output map
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and contrast with gradient J,

52 = (MEZEDO(WO)T) DWgrado .

we see the matrices with the same spectra and limiting

distributions.
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Backpropogation: weight initialization (Glorot et al.” 10%)

An earlier, more empirical, perspective on the same issue of
vanishing/exploding gradients was considered by Xavier Glorot and
Yoshua Bengio (2010). They considered the same model
assumptions as Pennington, A’ being approximately N(0,0?) and:
“Our objective heres is to understand why standard gradient
descent from random initialization is doing so poorly with deep
neural networks.... Finally, we study how activations and gradients
vary across layers and during training, with the idea that training
may be more difficult when the singular values of the Jacobian
associated with each layer are far from 1
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Figure 2: Mean and standard deviation (vertical bars) of the
activation values (output of the sigmoid) during supervised
Iearning., for the different hidden laycers of a decp archi-
tecture. The top hidden Ilayer quickly saturates at O (slow—
ings down all Icarnins). but then slowly desaturates arowund
epoch 100.

*http://proceedings.mlr.press/v9/glorot10a.html
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Backpropogation: weight initialization (Glorot et al.’

Glorot initialization follows from seeking the variance of both the
backpropogation gradient and forward activations to maintain the
same variance per layer: for W) € R"™" need 02, = 1/3n.

ic tangent acti with s
ormalized (bottom) initis alization. Top: O-peak

*http://proceedings.mlr.press/v9/glorot10a.html
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Batch normalization (loffe et al. 15)

Saturation in a deep net can alternatively be controlled in a more
learned manner by trying to shape the input to a nonlinear
activation to be with a learned mean and variance:

Input: Values of & over a mini-batch: B — {x1.. . }:
Parameters to be learned: v, 3
Output: {y; — BN, g(x;)}
<— 1 E"L // ini-batch ean
A _— Zi; mini- m
HB O
1
oF < o iE:1 (i — )2 // mini-batch variance
Tr; <— T — KB // normalize
VogE + €
Yi <— vx; + B = BN, g(x;) // scale and shift

Algorithm 1: Batch Normalizing Transform., applied to
activation o over a mini-batch.

Typically included after a fully connected layer, before the nonlinear

activation. Performed independently per nonlinear activation, with

the v and (3 learned as part of the net parameters 6.
*https://arxiv.org/pdf/1502.03167.pdf
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Batch normalization experiment (loffe et al. 15'°)

08
------------ +

Model Stepsto 72.2%  Max accuracy

Inception 310-10° 12.2%

: BN-Baseline 13.3-10° 12.7%

e BN-x§ 2.1-100 73.0%

s BN-x30 27-10° T48%

+ BN-x5-Sigmaid BN-x5-Sigmoid 69.8%
¢ Steps to match Inception

MoootMo M oMz Figure 3: For Inception and the batch-normalized

variants, the number of training steps required to
Figure 2. Single crop validation accuracy of Inception  yeqch the maximum accuracy of Inception (72.2%),
and its batch-normalized V(lriants, vs. the number Of and the maximum accuracy achieved bv the net-
training steps. work.

*https://arxiv.org/pdf/1502.03167 . pdf
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Stochastic gradient descent (SGD)

Given a loss function £(6; X, Y), gradient descent is given by
o0+ — (k) _ . grad,£(6, X, Y)

where 7 is referred to as the stepsize, or in deep learning the
“learning rate.”

Recall, we typically have a loss function which is the sum of n
individual loss functions, independent for each data point:
LO;X,Y) =01 300 1(0: %0, y)

For n > 1 gradient descent is computationally too costly and
instead one can break appart the n loss functions into
“mini-batches” and repeatedly solve

U1 = 0 — IA,|"Tgrady > 1(6; %, y)-
HENK
This is referred to as stochastic gradient descent as typically Ag is
chosen in some randomized method, usually as a partition of [n]
and a sequence of A which cover [n] is referred to as an “epoch.”
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Stochastic gradient descent: challenges and benefits

9(k+1) — g(k) — 77|/\k|_1grad9 Z I(Q;X/.My/—b)‘
HENK

SGD is preferable for large n as it reduces the per iteration
computational cost dependence on n to instead depend on
|Ak| which can be set by the user as opposed to n which is
given by the data set.

SGD, and gradient descent, require selection of a learning rate
(stepsize) which in deep learning is typically selected using
some costly trial and error heuristics.

The learning rate is typically chosen adaptively in a way that
satisfies > %o mk = o0 and Y 3% ; N2 < o0o; in particular as
me ~ kL.

The optimal selection of learning weight, and selection of A,
depends on the unknown local Lipschitz constant
lgrad/(01; X1, ) — grad/(62; xu, yu) || < Lp[|61 — 62]].
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SGD improvements: momentum

There are many improvements of stochastic gradient descent
typically used in practise for deep learning; particularly popular is
Polyak momentum:

pUtD) — (o) 4 ek — glk—1)) _ . grad, L (9(’<)>

or Nesterov's accelerated gradient:

ok = 0k 1 getk) — glk=1))
o+ = ) _ o . grad,L (é(k))

These acceleration methods give substantial improvements in the
linear convergence rate for convex problems; linear convergence

rates are: Normal GD z—j Polyak ﬁ: and NAG ‘/5; .
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