
Outline for today

I Visualisation of some network loss landscapes
I ResNet-56 with and without skip connection
I VGG9 dependence on weight decrease and normalisation
I ResNet depth dependence and skip connections

I Early theoretical results on over parameterisation and number
of connected components of loss level curves.

I Removing the weight nonlinearity through convexification.
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Loss landscape example: ResNet-56 (Li et al. 18’1)
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Loss landscape example: VGG9 (Li et al. 18’2)
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Loss landscape example: VGG9 normalized (Li et al. 18’3)
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Loss landscape example: ResNet skip (Li et al. 18’4)
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Loss landscape example: ResNet width (Li et al. 18’5)
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Topology of loss landscape (Freeman et al. 16’6)

Consider our loss function: L(θ;X ,Y ) = n−1
∑n

µ=1 l(θ; xµ, yµ)
and its associated level set

ΩL(λ) = {θ : L(θ;X ,Y ) ≤ λ}

Of particular interest are the number of connected components, say
Nλ, in ΩL(λ). If Nλ = 1 for all λ then L(θ;X ,Y ) has no isolated
local minima and any descent method can obtain a global minima.

If Nλ > 1 there may be “spurious valleys” in which the minima in
the connected component does not achieve the global minima.

6https://arxiv.org/pdf/1611.01540.pdf
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Topology of loss landscape (Freeman et al. 16’7)

Linear network: single component

Let H(x ; θ) be an L layer net given by h(`) = W (`)h(`−1) with
W (`) ∈ Rn`×n`−1 , then if n` > min(n0, nL) for 0 < ` < L, the sum
of squares loss function has a single connected component

ReLU network: multiple components

Let H(x ; θ) be an L layer net given by h(`) = σ(W (`)h(`−1)) with
W (`) ∈ Rn`×n`−1 and σ(·) = max(0, ·), then for any choice of n`
there is a distribution of data (X ,Y ) such that there are more than
one single connected component.

7https://arxiv.org/pdf/1611.01540.pdf
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Topology of loss landscape: quadratic activation (Venturi
et al. 16’8)

ReLu activation network: nearly connected

Consider a 2 layer ReLu network H(x , θ) = W (2)σ(W (1)x) with
W (1) ∈ Rm×n and W (2) ∈ Rm, then for any two parameters θ1 and
θ2 with L(θi ) ≤ λ for i = 1, 2, then there is a path γ(t) between θ1
and θ2 such that L(θγ(t)) ≤ max(λ,m−1/n).

quadratic activation network: single component

Let H(x , θ) be an L layer net given by h(`) = σ(W (`)h(`−1)) with
W (`) ∈ Rn`×n`−1 and quadratic activation σ(z) = z2, then once the

number of parameters n` ≥ 3N2` where N is the number of data
entries, then the sum of squares loss function has a single connected
component. For the two layer case with a single quadratic activation
this simplifies to n > 2N.

8https://arxiv.org/pdf/1802.06384.pdf
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Convexifying the parameters pt. 1 (Zhang et al. 16’9)

Consider a two layer convolutional neural network composed of one
convolutional layer followed by a fully connected layer.
Rather than working with x directly, form P vectors zp(x) for
p = 1, . . . ,P where zp(x) is the portion of x on patch p of the
convolutional layer. Then the kth component of H(x , θ) is given by

H(x , θ)k =
r∑

j=1

p∑
p=1

αk,j ,pσ(wT
j zp(x)).

Alternatively if we exclude the nonlinearity we can express this sum
by

r∑
j=1

p∑
p=1

αk,j ,pσ(wT
j zp(x)) =

r∑
j=1

Z (x)wj

where Z (x) has zp(x) as its pth row.

9https://arxiv.org/pdf/1609.01000.pdf
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Convexifying the parameters pt. 2 (Zhang et al. 16’10)

Using the trace formula this can be further condensed to

H(x , θ)k = tr

Z (x)

 r∑
j=1

wjα
T
k,j

 = tr (Z (x)Ak)

The network parameters are given by Ak nonlinearity is imposed by
the Ak having rank r , and we can express all of the parameters of
the matrix by A which is similarly rank r .

10https://arxiv.org/pdf/1609.01000.pdf
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Convexifying the parameters pt. 3 (Zhang et al. 16’11)

One can impose the network structure through A, but remove the
non-convex rank constraint by replacing a convexification, that is
the sum of the singular values of A (Schatten-1, or nuclear, norm).

If the convolutional filters and fully connected rows are uniformly
bounded in `2 by B1 and B2 respectively, then one can replace
then the sum of the singular values of A are bounded by B1B2r

√
n

where n is the network output dimension and the network
parameters can be considered by varying the nuclear norm bound
between 0 and B1B2r

√
n.

The resulting learning programme is fully convex and can be
efficiently solved. The above can be extended to nonlinear
activations and multiple layers, learning one layer at a time.

11https://arxiv.org/pdf/1609.01000.pdf

Theories of DL Lecture 11 Training a deep net: the objective landscape

https://arxiv.org/pdf/1609.01000.pdf


Convexified CNN: MNIST (Zhang et al. 16’12)
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Convexified CNN: CIFAR10 (Zhang et al. 16’13)
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