
Outline for today

I Introduction to Generative Adversarial Networks
I Inverse conv net for generating images
I The adversarial game
I Applications and improved training strategies, WGANs

I Adversarial attacks on deep nets
I Sign gradient attack, DeepFool, rotations and translations
I Universal adversarial examples, transferability between nets
I Adversarial physical objects
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CNN model through sparse coding (Papyan et al. 16’1)

Consider a deep conv. net composed of two convolutional layers:

The forward map (note notation using transpose of W (i)):

Z2 = σ
(
b(2) + (W (2))Tσ

(
b(1) + (W (1))T x

))
1https://arxiv.org/pdf/1607.08194.pdf
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Deconvolutional NN data model (Papyan et al. 16’2)

Two layer deconvolutional data model with weight matrices fixed,
W (i) = Di , and Γi ≥ 0 whose values compose data element X .

2https://arxiv.org/pdf/1607.08194.pdf
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Generative deep nets (Goodfellow et al. 14’4)

Example of a deep convolutional generator:

3

3https://arxiv.org/pdf/1511.06434.pdf
4https://arxiv.org/pdf/1406.2661.pdf
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Generative deep nets (Goodfellow et al. 14’5)

Train the two network parameters using the objective

min
G

maxDn
−1

n∑
µ=1

log(D(xµ, yµ)) + p−1
∑
p

log (1− D(G (zp), yp))

5https://arxiv.org/pdf/1406.2661.pdf
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Generative deep nets (Radford et al. 16’6)

6https://arxiv.org/pdf/1511.06434.pdf
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Generative deep nets (Radford et al. 16’7)

7https://arxiv.org/pdf/1511.06434.pdf
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Wasserstein GAN (Arjovsky et al. 17’9)

One of the central challenges with GANs is the ability to train the
parameters. Improvements have been made through choice of
generative architecture (DC-GAN of Radford) and through
different training objective functions (W-GAN)

8

8https://arxiv.org/pdf/1704.00028.pdf
9https://arxiv.org/pdf/1701.07875.pdf
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Wasserstein GAN (Arjovsky et al. 17’10)

10https://arxiv.org/pdf/1704.00028.pdf
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Wasserstein GAN (Arjovsky et al. 17’11)

11https://arxiv.org/pdf/1704.00028.pdf
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Large scale WGAN (Karras et al. 18’12)

12https://arxiv.org/abs/1710.10196
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Large scale WGAN (Karras et al. 18’13)

13https://arxiv.org/abs/1710.10196
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Adversarial examples for deep nets (Goodfellow et al. 1514)

14https://arxiv.org/pdf/1412.6572.pdf
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DeepFool algorithm (Moosavi-Dezfooli et al. 1515)

Alternative to Goodfellow approach of
r̂(xµ) = εsign(gradxl(θ; xµ, yµ).

15https://arxiv.org/pdf/1511.04599.pdf
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DeepFool algorithm (Moosavi-Dezfooli et al. 1516)

Average relative error of adversarial example r̂(x) such that

f (x) 6= f (x + r̂(x)): ρ̂adv (f ) = |D|−1
∑

x∈D
‖r̂(x)‖2
‖x‖2

16https://arxiv.org/pdf/1511.04599.pdf
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Rotations and Translations for CNNs (Engstrom et al.
1817)

17https://arxiv.org/pdf/1712.02779.pdf
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Rotations and Translations for CNNs (Engstrom et al.
1818)

18https://arxiv.org/pdf/1712.02779.pdf
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Universal adversary (Moosavi-Dezfooli et al. 1619)

19https://arxiv.org/pdf/1610.08401.pdf
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Transferability between nets (Liu et al. 1620)

RMSD is the `2 energy of the perturbation.

20https://arxiv.org/pdf/1611.02770.pdf
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Transferability between nets (Liu et al. 1621)

21https://arxiv.org/pdf/1611.02770.pdf
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Adversarial physical object: Turtle (Athalye et al. 1722)

22https://arxiv.org/pdf/1707.07397.pdf
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Adversarial graffiti (Eykholt et al. 1723)

23https://arxiv.org/pdf/1707.08945.pdf
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