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CNN model through sparse coding (Papyan et al. 16'!)

Consider a deep conv. net composed of two convolutional layers:
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The forward map (note notation using transpose of W(/):
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"https://arxiv.org/pdf/1607.08194.pdf
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Deconvolutional NN data model (Papyan et al. 16
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Two layer deconvolutional data model with weight matrices fixed,
w() = D;, and '; > 0 whose values compose data element X.

https://arxiv.org/pdf/1607.08194 . pdf
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Generative deep nets (Goodfellow et al. 14'%)

Example of a deep convolutional generator:
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Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps. 3

*https://arxiv.org/pdf/1511.06434 . pdf
*https://arxiv.org/pdf/1406.2661.pdf
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Generative deep nets (Goodfellow et al. 14)

Train the two network parameters using the objective

mén maxpn* Z log(D (X, yu)) + pt Z log (1 — D(G(2p),¥p))
p=1 P

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k& = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(V), ..., 20"} from noise prior py(2).
e Sample minibatch of m examples {x(),... ("™} from data generating distribution
Pdata ().

e Update the discriminator by ascending its stochastic gradient:

VoL Z; 1oz D (2) + 108 (1 - D (¢ (=9)))] -

end for
e Sample minibatch of 1 noise samples {z(1), ..., 20"} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, - glg (1-p(c (=2))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-

tum in our experiments.

*https://arxiv.org/pdf/1406.2661.pdf
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Generative deep nets (Radford et al. 16'°)

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate.

®https://arxiv.org/pdf/1511.06434. pdf
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Generative deep nets (Radford et al. 16'")

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.

"https://arxiv.org/pdf/1511.06434 . pdf
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Wasserstein GAN (Arjovsky et al. 17'°)

One of the central challenges with GANs is the ability to train the
parameters. Improvements have been made through choice of
generative architecture (DC-GAN of Radford) and through
different training objective functions (W-GAN)

Algorithm 1 WGAN with gradient penalty. We use default values of A = 10, ngritic = 5, @ =
0.0001, B; = 0, B2 = 0.9.

Require: The gradient penalty coefficient A, the number of critic iterations per generator iteration
Neritie» the batch size m, Adam hyperparameters o, 31, S2.

Require: initial critic parameters wy, initial generator parameters 6.

1: while € has not converged do

2 fort =1, ..., Neritic do

3 fori=1,...,m do

4: Sample real data & ~ P, latent variable z ~ p(z), a random number ¢ ~ U[0, 1].
s5: T Go(z)
6:
7
8

T ex+ (1 —e)x
L) < Dy (&) — Doy(®) + (|| Ve Du(#)]]2 — 1)?

: end for
9: w <+ Adam(V,, = 3" LO w, o, B1, B2)
10: end for

11: Sample a batch of latent variables {z()}1" | ~ p(2).
12: 0 < Adam(Vy-L 3" — D, (Go(2)),0,a, B, B2)

m

13: end while 8

®https://arxiv.org/pdf/1704.00028. pdf
*https://arxiv.org/pdf/1701.07875.pdf
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Wasserstein GAN (Arjovsky et al. 17’10

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)

Baseline (G: DCGAN, D: DCGAN)
e~ .
e ) B . "Ehigden
G': No BN and a coni[ant number of ﬁltem D: DCGAN
acuh ﬁ e |

G': 4-layer 512-dim ReLU MLP, D: DCGAN

No normalization in either G or D
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Gated multiplicative nonlmeanuei everywhere in G’ and D
- ] &

101-layer ResNet GG and D

Figure 2: Different GAN architectures trained with different methods. We only succeeded in train-
ing every architecture with a shared set of hyperparameters using WGAN-GP.

Oyttps://arxiv.org/pdf/1704.00028. pdf
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Wasserstein GAN (Arjovsky et al. 17'!1)

Convergence on CIFAR-10 Convergence on CIFAR-10

— Weight clipping g — Weight clipping
2 — Gradient Penalty (RMSProp) = ~— Gradient Penalty (RMSProp)
9 —— Gradient Penalty (Adam) 9 — Gradient Penalty {Adam)
— DCGAN — DCGAN
1
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Figure 3: CIFAR-10 Inception score over generator iterations (left) or wall-clock time (right) for
four models: WGAN with weight clipping, WGAN-GP with RMSProp and Adam (to control for
the optimizer), and DCGAN. WGAN-GP significantly outperforms weight clipping and performs
comparably to DCGAN.

Upttps://arxiv.org/pdf/1704.00028. pdf
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Large scale WGAN (Karras et al. 18'12)
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Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here refers to convolutional layers operating on NV x N spatial
resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.

pttps://arxiv.org/abs/1710.10196
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Large scale WGAN (Karras et al. 18'13)

Figure 1C c s. Next five rows: Nearest neighbor ain-
ing dats sed on fez ace dis “e. We used activations from five VG y a ted
by Chen & 2 nly the crop highlighted ottom right imag.

in order to exclude ima cKground and focus the ch on matchi

Bhttps://arxiv.org/abs/1710.10196
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Adversarial examples for deep nets (Goodfellow et al. 15*)

. T+
z Slgn(va<0..’Ey)) ESlgH(VzJ(G.fﬂ‘y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al.,, 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our e of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

“https://arxiv.org/pdf/1412.6572.pdf
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DeepFool algorithm (Moosavi-Dezfooli et al. 1

Algorithm 2 DeepFool: multi-class case

b AN A S

_
e

11:
12:
13:
14:
15:

input: Image x, classifier f.
output: Perturbation 7.

InitialiAze xo <— @, 7z <— O.
while &k (x;) = k(xo) do
for k #4 k(xp) do

wi — V(@) — Vi (mo) ()

I fr(®i) — fr(wo) (®i)

end for
[ <+ arg ming g moy T |7k

wi |2

r; <—

end while
return 7 = > . 7;

Alternative to Goodfellow approach of
P(xu) = esign(grad, J(0; xu, yu)-

Bhttps://arxiv.org/pdf/1511.04599. pdf
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DeepFool algorithm (Moosavi-Dezfooli et al. 15

Classifier Test error | fy4, [DeepFool] | time Py [4] time | g [18] | time
LeNet (MNIST) 1% 20x 107! 10ms | 1.0 W0ms | 25x1070 | >ds
FC500-150-10 (MNIST) | 1.7% 11x 107 Soms | 39x1071 | 10ms | 12x1071 | >2s
NIN (CIFAR-10) 115% | 23x107 1100ms | 12x 107" | 180ms | 24 x 1072 | 50
LeNet (CIFAR-10) 26% | 30x107 20ms | 13%107 [ 50ms |39%1072 | >Ts
CaffeNet (ILSVRC2012) | 426% | 27x 107 510 ms* | 3.5 1072 | 50 ms* | -

GoogLeNet (ILSVRC2012) | 31.3% 19x107° 800 ms* | 4.7x 1072 | 80 ms* | -

Table 1: The adversarial robustness of different classifiers on different datasets. The time required to compute one sample
for each method is given in the time columns. The times are computed on a Mid-2015 MacBook Pro without CUDA support.
The asterisk marks determines the values computed using a GTX 750 Ti GPU.

Average relative error of adversarial example 7(x) such that
F(x) # Fx+ P(x)): Paau(F) = [D| 71X e LN

®https://arxiv.org/pdf/1511.04599. pdf
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Rotations and Translations for CNNs (Engstrom

18')

Natural Adversarial

“revolver” “mousetrap’

-

“vulture” ““orangutan’’

Figure 1: Examples of adversarial transformations and their
predictions in the standard and "black canvas' setting.

https://arxiv.org/pdf/1712.02779. pdf
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Rotations and Translations for CNNs (Engstrom et al.

1818)

ImageNet

CIFAR-10

MNIST

Xent Loss
Xent Loss

Figure 3: Loss landscape of a random example for each dataset when performing left-right translations and rotations.
Translations and rotations are restricted to 10% of the image pixels and 30 deg respectively. We observe that the landscape
is significantly non-concave, making rendering FO methods for adversarial example generation powerless. Additional

examples are visualized in Figureﬂof the Appendix.

Bhttps://arxiv.org/pdf/1712.02779.pdf
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Figure 1: When added to a natural image. a universal per—
turbation image causes the image to be misclassified by the
deep neural network with high probability. Z.of7 irrrcgos-:
Original natural images. The labels are shown on top of
cach arrow. Cerzrcal irncage: Universal perturbation. Rig/:zz
irrrcages: Perturbed images. The estimated labels of the per—
turbed images are shown on top of each arrow.

Yhttps://arxiv.org/pdf/1610.08401.pdf
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Transferability between nets (Liu et al. 16%)

RMSD | ResNet-152 | ResNet-101 | ResNet-50 | VGG-16 | GoogLeNet
-ResNet-152 | 17.17 0% 0% 0% 0% 0%
-ResNet-101 | 1725 0% 1% 0% 0% 0%
-ResNet-50 | 17.25 0% 0% 2% 0% 0%
-VGG-16 | 17.80 0% 0% 0% 6% 0%
-GoogLeNet | 1741 0% 0% 0% 0% 5%

Table 4: Accuracy of non-targeted adversarial images generated using the optimization-based ap-
proach. The first column indicates the average RMSD of the generated adversarial images. Cell
(i,7) corresponds to the accuracy of the attack generated using four models except model 7 (row)
when evaluated over model j (column). In each row, the minus sign “~” indicates that the model
of the row is not used when generating the attacks. Results of top-3 accuracy can be found in the
appendix (Table14).

RMSD is the £2 energy of the perturbation.

Dnttps://arxiv.org/pdf/1611.02770. pdf
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Transferability between nets (Liu et al. 162!)

VGG-16 ResNet-50 ResNet-101 ResNet-152 GoogLeNet
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Figure 3: Decision regions of different models. We pick the same two directions for all plots: one is
the gradient direction of VGG-16 (x-axis), and the other is a random orthogonal direction (y-axis).
Each point in the span plane shows the predicted label of the image generated by adding a noise to
the original image (e.g., the origin corresponds to the predicted label of the original image). The
units of both axises are 1 pixel values. All sub-figure plots the regions on the span plane using the
same color for the same label. The image is in Figure |2|

Anttps://arxiv.org/pdf/1611.02770.pdf
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Adversarial physical object: Turtle (Athalye et al. 1722)

I classified as turtle [l classified as rifle
B classified as other

Figure 1. Randomly sampled poses of a 3D-printed turtle adver-
sarially perturbed to classify as a rifle at every viewpoint’. An

unperturbed model is classified correctly as a turtle nearly 100%
of the time.

Phttps://arxiv.org/pdf/1707.07397 . pdf
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Adversarial graffiti (Eykholt et al. 172

Table 5: A camouflage art attack on GTSRB-CNN. See
example images in Table[[] The targeted-attack success rate
is 80% (true class label: Stop, target: Speed Limit 80).

Distance & Angle  Top Class (Confid.) Second Class (Confid.)

510° Speed Limit 80 (0.88) ~ Speed Limit 70 (0.07)
50 15° Speed Limit 80 (0.94)  Stop (0.03)

5"30° Speed Limit 80 (0.86) ~ Keep Right (0.03)

51 45° Keep Right (0.82) Speed Limit 80 (0.12)
5" 60° Speed Limit 80 (0.55)  Stop (0.31)

10" 0° Speed Limit 80 (0.98) ~ Speed Limit 100 (0.006)
10" 15° Stop (0.75) Speed Limit 80 (0.20)
107 30° Speed Limit 80 (0.77) ~ Speed Limit 100 (0.11)

Figure 1: The left image shows real graffiti on a Stop sign, I5'0°  Speed Limit 80 (098) - Speed Limit 100 (001)

) oy 15 15°  Stop (090) Speed Limit 80 (0.06)
something that most umans would not think is SUSPICIOUS. 0+ g et T30 095)  Speed Limi 10000

0%)
The right image shows our a physical perturbation applied 20" 15" Speed Limit 80097 Speed Limit 100 (00D
25 0° Speed Limit 80 (0.99)  Speed Limit 70 (0.0008)
(0.99)
0.99)

t0 Stop sign. We design our perturbations to mimic graff, WO SpeedLimit80(099)  Speed Limit 100 (000)
aﬂd thlls “hide iﬂ the humﬂﬂ psyche " 407 0° Speed Limit 80 (0.99)  Speed Limit 100 (0.002)

Bnttps://arxiv.org/pdf/1707.08945 . pdf
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