
Outline for today

I Information

I Inference variational autoencoders

I mutual information and the information bottleneck

I generalization vs. representation bounds

I information plane illustration of: training, data size, weights,
depth
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Mutual Information (MI) and entropy pt. 1

Recall the the Kullback-Leibler (KL) Divergence between
distributions p(x) and q(x):

DKL(p(x)||q(x)) =
∑
x

p(x) log

(
p(x)

q(x)

)
= −

∑
x

p(x) log(q(x)) +
∑
x

p(x) log(p(x))

=: H(P,Q)− H(P)

which is also in terms of the entropy H(·) of the distributions.
Let p(x , y) be the joint distribution and p(x) and p(y) the
marginal probabilities; for instance p(x) =

∫
y p(x , y)dy , then:

I (X ;Y ) = DKL(p(x , y)||p(x)p(y)) =
∑
x ,y

p(x , y) log

(
p(x , y)

p(x)p(y)

)
=

∑
x ,y

p(x , y) log

(
p(x |y)

p(x)

)
= H(x)− H(X |Y )
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Mutual Information (MI) and entropy pt. 2

A few properties:

I I (X ;Y ) ≥ 0, and equals 0 if and only if X and Y are
independent, that is p(x , y) = p(x)p(y).

I As I (X ;Y ) ≥ 0, it follows from I (X ;Y ) := H(X )− H(X |Y )
that H(X ) ≥ H(X |Y ).

I The “data processing inequality” states that if X → Y → Z is
a Markov chain, then I (X ;Y ) ≥ I (X ;Z ) with equality if and
only if I (X ;Y ) = I (X ;Z ).
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Autoencoder Illustration

1

The parameters, (θ, φ), of the autoencoder are then learned:

L(θ, φ) = n−1
n∑

µ=1

l(xµ, fθ(gφ(xµ)))

1https://lilianweng.github.io/lil-log/2018/08/12/
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Inference Variational Autoencoders (Zhao et al. 17’2)

The LInfoVAE is given by

−λDKL(qφ(z)||pθ(z))− Eqφ(z)DKL(qφ(x |z)||pθ(x |z)) + αIqφ(x ; z)

where Iφ(x ; z) is the mutual information between x and z under
the joint distribution qφ(x , z). VAE LELBO is recovered for α = 0
and λ = 1. β-VAE loss is recovered for α = 1− λ.

2https://arxiv.org/pdf/1706.02262.pdf
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Information Bottleneck for DNN (Tishby et al. 15’3)

I (Y ;X ) ≥ I (Y ; h1) ≥ · · · ≥ I (Y ; hm) ≥ I (Y ; Ŷ )

The mutual information I (Y ; Ŷ ) is maximized by maximizing
I (Y ; hi ) for each layer.

3https://arxiv.org/pdf/1503.02406.pdf
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Information Bottleneck: compression (Tishby et al. 15’4)

Consider the data, X and desired output Y . The minimal sufficient
statistic of X to represent Y is denoted by X̂ and is the simplest
representation of X to describe Y .

Considering the map Y → X → X̂ from the desired output to X
and then its simplest representation X̂ we have I (Y ;X ) ≥ I (Y ; X̂ )
with the gap minimized by minimizing I (X ; X̂ ). The optimal X̂
follows from minimizing

I (X ; X̂ ) + βEDKL(p(y |x)||p(y |x̂)) =: I (X ; X̂ ) + βDIB

We can then view the layers as learning representations in terms of
the information retained at a layer

I (hi−1; hi ) + βI (Y ; hi−1|hi ).
4https://arxiv.org/pdf/1503.02406.pdf
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Information Bottleneck: finite data (Tishby et al. 15’5)

Consider the data X and its sufficient statistic X̂ to have some
cardinality in terms of their representation, e.g. a measure of the
support of the data manifold, and let Î be the empirical estimate
of the mutual information based on the finite sample distribution
p̂(x , y) from n samples, then the generalization bound is given by

I (X̂ ;Y ) ≤ Î (X̂ ;Y ) +O

(
|X̂ | · |Y |√

n

)

and

R := I (X ; X̂ ) ≤ Î (X ; X̂ ) +O

(
|X̂ |√
n

)
which illustrate the dependence on complexity is given in terms of
the sufficient statistic X̂ complexity defined by Y rather than the
ambient dimension of X .

5https://arxiv.org/pdf/1503.02406.pdf
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Information Bottleneck: finite data (Tishby et al. 15’6)

Let DN = I (X ;Y |Ŷ ) and RN = I (X ; Ŷ ) be the information
bottleneck distortion and representation for the network. Then the
generalization gap is ∆G := DN − DIB(n) and the complexity gap
is ∆C := RN − R(n).

6https://arxiv.org/pdf/1503.02406.pdf
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Information Bottleneck plane (Schwartz-Ziv et al. 17’7)

note, change of notation of hidden layers from hi to Ti .

7https://arxiv.org/pdf/1703.00810.pdf
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Information Bottleneck plane (Schwartz-Ziv et al. 17’8)

Consider the 2d plane expressing the quantities I (X ,Tj) vs.
I (Tj ,Y ) measuring how much layer j correlates the information
between a layer and the output as a function of the information
between the input and the same layer.

I (X ;Y ) ≥ I (T1;Y ) ≥ · · · ≥ I (TK ;Y ) ≥ I (Ŷ ;Y )

H(X ) ≥ I (X ;T1) ≥ · · · ≥ I (X ;Tk) ≥ I (X ; Ŷ )

8https://arxiv.org/pdf/1703.00810.pdf
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Information Bottleneck plane (Schwartz-Ziv et al. 17’9)

9https://arxiv.org/pdf/1703.00810.pdf
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Information Bottleneck plane (Schwartz-Ziv et al. 17’10)

10https://arxiv.org/pdf/1703.00810.pdf
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Information Bottleneck plane (Schwartz-Ziv et al. 17’11)

11https://arxiv.org/pdf/1703.00810.pdf
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Information Bottleneck plane (Schwartz-Ziv et al. 17’12)

The information bottleneck tradeoff is given by minimizing

min
p(t|x),p(y |t),p(t)

I (X ;T )− βI (T ;Y )

where β balances the tradeoff of representing X and Y .
Plotted in the figure is per layer the minimizer of

ExDKL(p(ti |x)||pIBβ (ti |x))
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