
Outline for today

I Dropout: regularization, test error, and sparsification

I Recurrent neural nets (RNNs): example through DeepSpeech
and LSTM

I Capsule networks

I Residual networks

I Very brief summary of the course
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Dropout (Srivastava et al. 14’1)

Dropout is a method by which, during training, the activations are
set to zero with some probability. Note, dropout is only used in the
training phase, not in testing.

Dropout has a number of valuable consequences, ranging from
improving sparsity in the net, improving testing accuracy, avoiding
overfitting, and can be used to evaluate uncertainty in a deep net.

1http:

//jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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Dropout: test error (Srivastava et al. 14’2)

2http:

//jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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Dropout: street house numbers (Srivastava et al. 14’3)

3http:

//jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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Dropout: sparse features (Srivastava et al. 14’4)

4http:

//jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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Recurrent Neural Nets: Deep Speech (Hannun et al. 14’5)

Consider a data set X = {(x (1), y (1)), (x (2), y (2)), . . .} with each

x
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with C chosen as, say 7. The Deep Speech net is then designed
with three normal fully connected layers
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with say σ(z) = max(0, z), followed by forward and backward
recurrence layers
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Then a final fifth layer
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t and a softmax applied to h(5).

5https://arxiv.org/pdf/1412.5567.pdf
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Recurrent Neural Nets: Deep Speech (Hannun et al. 14’6)

6https://arxiv.org/pdf/1412.5567.pdf
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Recurrent Neural Nets: Deep Speech (Hannun et al. 14’7)

7https://arxiv.org/pdf/1412.5567.pdf
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LSTM with forget gates (Gers et al. 99’8)

8https://pdfs.semanticscholar.org/e10f/

98b86797ebf6c8caea6f54cacbc5a50e8b34.pdf
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LSTM with forget gates (Gers et al. 99’9)

In more standard notation:

Forget: ft = σf (Wf xt + Uf ht−1 + bf )

Input: it = σi (Wixt + Uiht−1 + bi )

Output: ot = σo(Woxt + Uoht−1 + bo)

Gate: ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc)

ht = ot ◦ σh(ct)

where ◦ is entrywise product and each layer uses both the initial
input xt along with a progressing hidden state with a variety of
affine transformations.

9https://pdfs.semanticscholar.org/e10f/

98b86797ebf6c8caea6f54cacbc5a50e8b34.pdf
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Recurrent Neural Nets: bi-dir. LSTM (Fan et al. 15’10)

10https://www.microsoft.com/en-us/research/wp-content/uploads/

2015/04/icassp2015_fanbo_1009.pdf
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Recurrent Neural Nets: bi-dir. LSTM (Fan et al. 15’11)

11https://www.microsoft.com/en-us/research/wp-content/uploads/

2015/04/icassp2015_fanbo_1009.pdf
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LSTM in Dota2 game arch. (OpenAI 18’12)

12https://blog.openai.com/openai-five/
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Capsules (Sabour 17’13)

Note, this concept is much older, see “credibility networks” by
Hinton, Ghahramani, and Teh.

13https://arxiv.org/pdf/1710.09829.pdf
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Capsules (Sabour 17’14)

14https://arxiv.org/pdf/1710.09829.pdf
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Capsules (Sabour 17’15)

15https://arxiv.org/pdf/1710.09829.pdf
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Residual Networks (He 15’16)

If the block is attempting to learn a map H(x) the ResNet instead
attempts to learn F(x) := H(x)− x which is the residual. One
can speculate this is easier to learn if H(x) is approximately an
identity map.

16https://arxiv.org/pdf/1512.03385.pdf
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Residual Networks: training vs plain (He 15’17)

17https://arxiv.org/pdf/1512.03385.pdf
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Residual Networks: training vs plain (He 15’18)

18https://arxiv.org/pdf/1512.03385.pdf
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Residual Networks (He 15’19)

19https://arxiv.org/pdf/1512.03385.pdf
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Example of ILSVRC localisation and object detection

20

2013-14: All object classification per scene; 456,000 training set
20ImageNet Large Scale Visual Recognition Challenge, Russakovsky et al.

2015.
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Residual Networks (He 15’22)

See also Highway nets by Srivastava et al. 1521 which very the
amount of x being passed through a skip connection.

21https://arxiv.org/pdf/1505.00387.pdf
22https://arxiv.org/pdf/1512.03385.pdf
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Very brief summary of the course

Architecture: expressivity benefits of depth, plus more complex
notions such as VAEs, GANs, RNNs, LSTM, Capsules, ResNets

Data: High dimensional data of interest living on a much lower
dimensional space than the ambient dimension. Deep nets are able
to effectively express functions that take on desired values on these
lower dimensional manifolds. Models for real world data and deep
net approximation rates is an area in need of further work.

Learning (ability to train): scalable and efficient optimization
algorithms are essential, but must good initializations and smart
architectures are also essential: batch normalization,
vanishing/exploding gradients, ResNets, etc...

Applications: while not the focus here, much of the interest in
deep learning is due to its remarkable efficacy in a wide range of
applications from computer vision, to playing games, to generating
realistic synthetic objects/art. Thank you for your attention
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