QR Factorisation

Lemma: Given any two vectors $u,v\in\mathbb{R}^n$ with $\|u\|_2=\|v\|_2\ \exists w\in\mathbb{R}^n$ s.t. H(w)u=v .

Proof: take w=r(u-v), any $r\in\mathbb{R}\setminus\{0\}$, so

$$egin{array}{ll} w^T w &= r^2 (u^T u - 2 v^T u + v^T v) \ &= 2 r^2 (u^T u - v^T u) \ &= 2 r^2 (u - v)^T u = 2 r w^T u \end{array} ext{ as } \|u\| = \|v\|$$

so $w^T u = (1/2r) w^T w$. Thus

$$\left(I-rac{2}{w^Tw}ww^T
ight)u=u-rac{2}{w^Tw}rac{w^Tw}{2r} \ r(u-v)=v \quad \Box$$

In particular

$$v = (||u||_2, 0, \dots, 0) = H(r[u_1 - ||u||_2, u_2, \dots, u_n]) u.$$

Can be applied to matrices:

if u is 1^{st} column of A: write $H(w)=H_1, lpha=lpha_1$

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} lpha_1 A = egin{bmatrix} lpha_1 & imes \ldots imes \ 0 & & & \ & \vdots & & \ 0 & & & \ \end{bmatrix} & ext{and if } egin{aligned} egin{aligned} egin{aligned} lpha_2 & imes \ldots imes \ 0 & & \ & \vdots & \ 0 & & \ \end{bmatrix} \end{aligned}$$

then

$$H_2 = \left[egin{array}{cc} 1 & 0 \ 0 & H(\hat{w}) \end{array}
ight] = H\left([0,\hat{w}]
ight)$$

satisfies

$$H_2H_1A=egin{bmatrix} lpha_1 & imes & im$$

continuing inductively for n steps if m > n gives

$$H_n \dots H_2 H_1 A = \left[egin{array}{ccc} lpha_1 & & * \ & \ddots & \ 0 & & lpha_n \end{array}
ight] = R \in \mathbb{R}^{m imes n}$$

or for m-1 steps if $m \leq n$ gives

$$H_{m-1}\dots H_2H_1A=\left[egin{array}{ccc}lpha_1&&*&\ &\ddots&\ 0&&lpha_m\end{array}
ight]=R\in\mathbb{R}^{m imes n}$$

Writing

$$Q=(H_n\ldots H_2H_1)^{-1}=H_1^TH_2^T\ldots H_n^T=H_1H_2\ldots H_n$$
 as Householder matrices are symmetric gives

Theorem: Given any $A\in\mathbb{R}^{m imes n}$, \exists an orthogonal matrix $Q\in\mathbb{R}^{m imes m}$ and an upper triangular matrix $R\in\mathbb{R}^{m imes n}$ s.t. A=QR

Proof: Just take $H_i = I$ if i^{th} column is already zero below diagonal and the above procedure can not break down.

NLA – p.4/12

Remark: If
$$A=\begin{bmatrix} \ | & \ | & \ a_1 & a_2 & \dots & a_n \ | & \ | & \ | & \ | \end{bmatrix}$$
 and $A=QR$ then $Q=\begin{bmatrix} \ | &$

and $\{q_1, q_2, \ldots, q_n\}$ is an orthonormal basis for span $\{a_1, a_2, \ldots, a_n\}$ if this set is linearly independent.

 $\Rightarrow QR$ factorization essentially same as Gramm-Schmidt.

Exercise: What happens to QR if $\{a_1, \ldots, a_{n-1}\}$ is linearly independent with $a_n \in \text{span}\{a_1, \ldots, a_{n-1}\}$?

Example: given data y_1, \ldots, y_m at points x_1, \ldots, x_m find parameters in a model e.g. <u>linear</u> model y = ax + b (parameters a, b) such that

$$\sum \left[y_i - (ax_i + b)
ight]^2$$
 is min (regression) same as

$$egin{aligned} & \mathsf{min} \ a,b \ \parallel & egin{bmatrix} x_1 & 1 \ x_2 & 1 \ dots \ x_m & 1 \ \end{bmatrix} & egin{bmatrix} a \ b \ \end{bmatrix} - egin{bmatrix} y_1 \ y_2 \ dots \ y_m \ \end{bmatrix} \parallel_2 \end{aligned}$$

QR Algorithm for eigenvalues (eig in matlab)

Set
$$A=A_1$$
 for $k=1,2,\dots$ $\left\{egin{array}{ll} ext{factor} & A_k=Q_kR_k & ext{(QR factorisation)} \ ext{set} & A_{k+1}=R_kQ_k & ext{(matrix multiply)} \end{array}
ight.$

Lemma: $\{A_k\}$ are all similar matrices and so have same eigenvalues

Proof:
$$A_{k+1} = R_k Q_k = Q_k^T Q_k R_k Q_k = Q_k^{-1} \left(A_k \right) Q_k$$

Fact: $A_k \to \text{upper triangular matrix as } k \to \infty$.

So for large k, $diag\left(A_{k}\right)$ are good approximations to the eigenvalues.

When complex conjugate eigenvalues arise, 2×2 real diagonal blocks remain in A_k which each have a pair of the complex conjugate eigenvalues.

Notes:

- Speed of convergence depends on the size of gaps between the eigenvalues: more well separated ⇒ faster convergence.
- 2. Convergence is accelerated by the use of shifts (see problem sheet)
- 3. An orthogonal similarity reduction to Hessenberg form is always employed as a $\mathbf{1}^{st}$ step before apply the QR algorithm with shifts.

Reduction to Hessenberg form

Want a similarity transform $H_p \dots H_2 H_1 A H_1 H_2 \dots H_p$ where H_i are Householder matrices but if

$$H_1A = egin{bmatrix} oldsymbol{ imes} imes oldsy$$

then H_1AH_1 is full i.e. postmultiplication destroys zeros created (otherwise a direct method for eigenvalues!)

So instead let

$$H_1=egin{bmatrix} 1&0\cdots0\ \hline 0\ dots&K_1\ 0&\end{bmatrix} &1 \ n-1 &, \ A=egin{bmatrix} a_1&v_1^T\ \hline u_1&B_1 \end{bmatrix} ext{ then}$$

$$H_1A_1H_1 =$$

$$\left[egin{array}{ccc} a_1 & v_1^T \ K_1u_1 & K_1B_1 \end{array}
ight] \left[egin{array}{ccc} 1 & 0 \ 0 & K_1 \end{array}
ight] = \left[egin{array}{ccc} a_1 & v_1^TK_1 \ K_1u_1 & K_1B_1K_1 \end{array}
ight]$$

and choosing K_1 to be a Householder matrix satisfying $K_1u_1=(\alpha_1,0,\ldots,0)^T$ we have

$$A^{(2)} = H_1 A H_1 = \left[egin{array}{cccc} a_1 & b_1 & \hat{v}_2^T \ lpha_1 & a_2 & v_2^T \ O & u_2 & B_2 \end{array}
ight] & 1 \ 1 & 1 & n-2 \end{array}$$

inductively (similar to before)

$$A^{(n-1)} = H_{n-2} \dots H_2 H_1 A H_1 H_2 \dots H_{n-2}$$

is in Hessenberg form

QR factorization can now be achieved by n-1 Givens rotation matrices (see problem sheet) and the Hessenberg form is preserved by the QR algorithm ie. all of the A_k 's are upper Hessenberg.