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QR Factorisation
Lemma: Given any two vectors u, v ∈ R

n with
‖u‖2 = ‖v‖2 ∃w ∈ R

n s.t. H(w)u = v .

Proof: take w = r(u − v), any r ∈ R \ {0}, so

wTw = r2(uTu − 2vTu + vTv)
= 2r2(uTu − vTu) as ‖u‖ = ‖v‖
= 2r2(u − v)Tu = 2rwTu

so wTu = (1/2r)wTw. Thus

(

I −
2

wTw
wwT

)

u = u −
2

wTw

wTw

2r
r(u − v) = v

In particular
v = (‖u‖2, 0, . . . , 0) = H (r [u1 − ‖u‖2, u2, . . . , un])u.
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Can be applied to matrices:
if u is 1st column of A: write H(w) = H1, α = α1

H1A =









α1 × . . .×
0
...
0

B









and if H(ŵ)B =









α2 × . . .×
0
...
0

C









then

H2 =

[

1 0
0 H(ŵ)

]

= H ([0, ŵ])

satisfies

H2H1A =













α1 × × . . .×
0 α2 × . . .×
0
...
0

0
...
0

C













NLA – p.3/12



continuing inductively for n steps if m > n gives

Hn . . .H2H1A =









α1 ∗
. . .

0 αn









= R ∈ R
m×n

or for m − 1 steps if m ≤ n gives

Hm−1 . . .H2H1A =





α1 ∗
. . .

0 αm



 = R ∈ R
m×n

Writing
Q = (Hn . . .H2H1)

−1 = HT
1 HT

2 . . .HT
n = H1H2 . . .Hn

as Householder matrices are symmetric gives

Theorem: Given any A ∈ R
m×n, ∃ an orthogonal matrix

Q ∈ R
m×m and an upper triangular matrix R ∈ R

m×n s.t.
A = QR

Proof: Just take Hi = I if ith column is already zero below
diagonal and the above procedure can not break down.
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Remark: If A =





| | |
a1 a2 . . . an

| | |





and A = QR

then Q =





| | |
q1 q2 . . . qn
| | |





and {q1, q2, . . . , qn} is an orthonormal basis for
span{a1, a2, . . . , an} if this set is linearly independent.

⇒ QR factorization essentially same as Gramm-Schmidt.

Exercise: What happens to QR if {a1, . . . , an−1} is linearly
independent with an ∈ span{a1, . . . , an−1} ?
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Example: given data y1, . . . , ym at points x1, . . . , xm

find parameters in a model e.g. linear model y = ax + b
(parameters a, b)
such that
∑

[yi − (axi + b)]2 is min (regression)

same as

min
a, b

‖









x1 1
x2 1
...

xm 1









[

a
b

]

−









y1
y2
...

ym









‖2
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QR Algorithm for eigenvalues (eig in matlab)

Set A = A1

for k = 1, 2, . . .

{

factor Ak = QkRk (QR factorisation)
set Ak+1 = RkQk (matrix multiply)

Lemma: {Ak} are all similar matrices and so have same
eigenvalues
Proof: Ak+1 = RkQk = QT

kQkRkQk = Q−1
k (Ak)Qk

Fact: Ak → upper triangular matrix as k → ∞.

So for large k, diag (Ak) are good approximations to the
eigenvalues.

When complex conjugate eigenvalues arise, 2 × 2 real
diagonal blocks remain in Ak which each have a pair of the
complex conjugate eigenvalues.
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Notes:

1. Speed of convergence depends on the size of gaps
between the eigenvalues: more well separated ⇒
faster convergence.

2. Convergence is accelerated by the use of shifts (see
problem sheet)

3. An orthogonal similarity reduction to Hessenberg form
is always employed as a 1st step before apply the QR
algorithm with shifts.
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Reduction to Hessenberg form
Want a similarity transform Hp . . .H2H1AH1H2 . . .Hp

where Hi are Householder matrices but if

H1A =









× × · · ·×
0 × · · ·×
...

...
...

0 × · · ·×









then H1AH1 is full i.e. postmultiplication destroys zeros
created (otherwise a direct method for eigenvalues!)
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So instead let

H1 =









1 0 · · · 0
0
...
0

K1









1

n − 1

1 n − 1

, A =

[

a1 vT
1

u1 B1

]

then

H1A1H1 =
[

a1 vT
1

K1u1 K1B1

] [

1 0
0 K1

]

=

[

a1 vT
1 K1

K1u1 K1B1K1

]

and choosing K1 to be a Householder matrix satisfying
K1u1 = (α1, 0, . . . , 0)

T we have

A(2) = H1AH1 =





a1 b1 v̂T
2

α1 a2 vT
2

O u2 B2





1
1

n − 2

1 1 n − 2
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inductively (similar to before)

A(n−1) = Hn−2 . . .H2H1AH1H2 . . .Hn−2

is in Hessenberg form

QR factorization can now be achieved by n − 1 Givens
rotation matrices (see problem sheet) and the Hessenberg
form is preserved by the QR algorithm ie. all of the Ak’s are
upper Hessenberg.

NLA – p.12/12


	
	
	
	
	
	
	
	
	
	
	
	

