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QR Factorisation

Lemma: Given any two vectors u, v € R"™ with
|u|l2 = [|v||2 Fw € R* s.it. Hw)u = v .

Proof: take w = r(u — v), any r» € R \ {0}, so

wlw = r?(ulf'u — 2vTu + viv)
272 (ul'u — vlu) as ||ul| = ||v]]

= 27%(u — v)Tu = 2rwlu

so wlu = (1/2r)wlw. Thus

7 2 T 2 wlw ( )
— ww’ |u=u— r(fu—v)=v O
wT w wlTw 27r

In particular
v = (||ul[2,0,...,0) = H (r [u1 — ||u]|2, uz,. .., un]) u.
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Can be applied to matrices:

if u is 15¢ column of A: write H(w) = Hi,a = o

a1 | X ... X
0
H{A=| . B and if H(w)B =
| 0 i
then
1 0 N
Ha= | o iy | = H (0]
satisfies
a1 | X | X e.oX
0 a9 | X . X
HyH1 A = 0] 0
: : C
- O O —

a2

0
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continuing inductively for n steps if m > n gives

H,... HHA =

aq

0

x

an

or for m — 1 steps if m, <n gives_

H,_1... HH{A =

Writing

aq

0

X

Am

:ReRmX’n

:RERmXTL

Q= (H,...HH,)'=H'H]...H' = HH,...H,
as Householder matrices are symmetric gives

Theorem: Given any A € R™*™, 3 an orthogonal matrix
Q € R™X™ and an upper triangular matrix R € R™*™ s t.

A=QR

Proof: Just take H; = I if '* column is already zero below

diagonal and the above procedure can not break down.
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Remark: If A= | a1 a2 ... ap

and A = QR
B |
thenQ = | q1 g2 ... qgn
N |
and {q1,q2,...,qn} IS an orthonormal basis for
span{ai, as,...,ay} If this setis linearly independent.

= QR factorization essentially same as Gramm-Schmidt.

Exercise: What happensto QR if {a1,...,an,—1} IS linearly
iIndependent with a,, € span{ai,...,an—1} ?
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Example: given data y1, ..., ym at points 1, ..., xm,
find parameters in a model e.g. linear model y = ax + b
(parameters a, b)

such that

S [y; — (az; + b)]? is min (regression)

Same as

xr1 1 Y1
min ” xg 1 a | | Y2 ”
a,b . b . 2
| Tm 1 | L Ym |
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QR Algorithm for eigenvalues (eig in matlab)
Set A = A,

fork —1.2,... { factor Ap = QwRir,  (QR factorisation)

set Axi1 = RpQr (matrix multiply)

Lemma: { Ag} are all similar matrices and so have same
eigenvalues

Proof: Ap1 = ReQr = QLQrRrQr = Q1" (Ax) Qx O
Fact: A, — upper triangular matrix as k — oo.

So for large k, diag (Ax) are good approximations to the
eigenvalues.

When complex conjugate eigenvalues arise, 2 x 2 real
diagonal blocks remain in A which each have a pair of the
complex conjugate eigenvalues.
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Notes:

1. Speed of convergence depends on the size of gaps
between the eigenvalues: more well separated =-
faster convergence.

2. Convergence is accelerated by the use of shifts (see
problem sheet)

3. An orthogonal similarity reduction to Hessenberg form

is always employed as a 15¢ step before apply the QR
algorithm with shifts.
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Reduction to Hessenberg form

Want a similarity transform Hy, ... HoH1AHH> ... H,
where H; are Householder matrices but if

X | X oo X

0| X+ X
H{ A =

_() X oo X |

then H1 AH; is full i.e. postmultiplication destroys zeros
created (otherwise a direct method for eigenvalues!)
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So instead let

1 10---0 1
0
— T
Hy = ; K4 n—1 , A= al‘vl then
] (V5] ‘ Bl
. 0 _
1 n—1
H1A1H1 —
aq vflr 1 O - i aq v{Kl
K1u1 KlBl 0 Kl - I K1u1 KlBlKl
and choosing K7 to be a Householder matrix satisfying
Klul p— (041, O, « oo O)T we have
I ai bl ’ﬁg ] 1
A(Z) — HlAI‘Il = a1 a9 ’Ug 1
I O wus B> n—2

1 1 n—2
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iInductively (similar to before)
A=Y —H, o...H,HiAHH, ... H,_5

IS In Hessenberg form

QR factorization can now be achieved by n — 1 Givens
rotation matrices (see problem sheet) and the Hessenberg
form Is preserved by the QR algorithm ie. all of the A,’s are
upper Hessenberg.

NLA —p.12/12



	
	
	
	
	
	
	
	
	
	
	
	

