
NLA – p.1/13

Direct Methods for linear systems Ax = b
basic point: easy to solve triangular systems








. . .
× × ×
0 × ×
0 0 ×









←

etc.
an−1,n−1xn−1 = bn−1 − an−1,nxn ↖
solve an,nxn = bn then ↖

back substitution: takes ∼ n2 operations. Need aii 6= 0.
Similar lower triangular (1st equation, then 2nd etc):

forward substitution.

So could solve Ax = b by

A = QR and
{

Qy = b ⇒ y = QT b
Rx = y back subs. asR upper triangular

But 1
2 the number of operations (and other advantages e.g.

for sparse) to perform LU factorisation: based on Gauss
elimination (successively create zeros below diagonal by
following algorithm) NLA – p.2/13

Gauss Elimination:

for columns j = 1, . . . , n− 1
for rows i = j + 1, . . . , n

calculate multiplier lij = (aij/ajj), (ajj is the pivot)
row i←− row i− lij ∗ row j (?)

end i
end j

(?) for k = j + 1, . . . , n
aik ←− aik − lijajk

end k
bi ←− bi − lijbj

reduces to upper triangular matrix U without changing
solution in ∼ 2

3n3 operations.

Back substitution⇒ solution
NLA – p.3/13

If store multiplier lij used to zero aij as i, j entry of a unit
lower triangular matrix L then

A = LU with
{

Ly = b forward subs.
Ux = y back subs.

solves Ax = b.

Note: For many b’s need only 1 LU factorization.

Recall aii 6= 0 necessary for Gauss Elimination so fails on

e.g.
[

0 1
1 0

]

which is non-singular.

NLA – p.4/13

Pivoting:
Row interchanges: often expressed as PA = LU , P
permutation.

Partial pivoting: when zeroing subdiagonal of pth column

find max |aip| = |m|, i = p, p + 1, . . . , n;

m becomes pivot

swap row p with row which gives this max.

Fails if and only if A singular as
app = 0, m = 0⇒ det A = 0

NLA – p.5/13

Special forms

• A Symmetric positive definite: A = LLT , L lower
triangular, Cholesky factorisation.

• A Symmetric Indefinite: A = LDLT , L lower
triangular, D block diagonal, 1× 1 and 2× 2 blocks:
Bunch - Parlett, Bunch - Kaufmann factorizations.

• A Banded: eliminate only in band, ∼ 1
3nb2 operations

for LU
(NB pivoting generally destroys bandedness)

• A Sparse: good software e.g. HSL or \ for sparse in
matlab.

NLA – p.6/13

Ill-conditioning

Proposition: If Ax = b (1) and A(x + δx) = b + δb (2)
then

‖δx‖

‖x‖
≤ ‖A‖‖A−1‖

‖δb‖

‖b‖

Proof: A−1((2)− (1))⇒ δx = A−1δb

so ‖δx‖ = ‖A−1δb‖ ≤ ‖A−1‖‖δb‖

also ‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖

or
1

‖x‖
≤
‖A‖

‖b‖

so
‖δx‖

‖x‖
≤ ‖A‖‖A−1‖

‖δb‖

‖b‖

↑ ↑ ↑

relative change in solution condition number relative perturbation of rhs NLA – p.7/13

Also if A is perturbated to A + δA then

‖δx‖

‖x + δx‖
≤ ‖A‖‖A−1‖

‖δA‖

‖A‖

(Exercise: Show this)
These results identify κ = ‖A‖‖A−1‖ (the ‘condition
number’ for solution of linear systems) as a measure of
ill-conditioning.

Usually necessary if large κ to reformulate problem
because:

Gauss elimination finds x̃ such that r = b−Ax̃ is small
(not exactly x s.t. Ax = b) on a computer.

For many A, r small⇒ e = x− x̃ is small but not when κ
is large as indicated by the above results.

NLA – p.8/13

Example: Interpolation: Given N and data f(xi) at distinct
points xi, i = 0, 1, . . . , N , find polynomial
p(x) =

∑n
k=0 akxk ∈ Πn such that

p(xi) = f(xi).

This can be written as: solve














1 x0 x2
0 · · · xn

0
1 x1 x2

1 · · · xn
1

1 x2 x2
2 · · · xn

2
...

...
...

...
...

1 xn x2
n · · · xn

n



























a0

a1

a2
...

an













=













f(x0)
f(x1)
f(x2)

...
f(xn)













NLA – p.9/13

For xk = k + 1,
expected accuracy

n = 4 κ = 2 · 6× 104 12 decimal places
n = 8 κ = 4 · 2× 1010 6 decimal places
n = 12 κ = 4 · 2× 1017 0 decimal places
n = 16 κ = 1 · 9× 1025 no hope of accurate solution

but can reformulate the interpolation problem in many ways
e.g. use a better basis for ΠN than {1, x, x2, . . . , xN}.
In fact for this problem there are reliable and faster (O(N2))
methods (GVL p183 Vandermonde)

NLA – p.10/13

NLA – p.11/13

Iterative solution methods for Ax = b
idea: split A = M −N , so easy to solve systems with M ,
then iterate:

Guess x(0)

solve Mx(k) = Nx(k−1) + b for k = 1, 2, . . .

basic point: if {x(k)} converges (to x, say) then

Mx = Nx + b, ie. Ax = b

ie. it converges to the solution.

NLA – p.12/13

NLA – p.13/13

	
	
	
	
	
	
	
	
	
	
	
	
	

