NLA — p.1/1:

Direct Methods for linear systems Aax = b
basic point: easy to solve triangular systems

X X X etc.
0 X X An—-1,n—1Lnpn—-1 — bp—1 — An—-1,nLn AN
0 0 x | < solvea,nx, = by, then

back substitution: takes ~ n? operations. Need a;; # O.

Similar lower triangular (1% equation, then 2™¢ etc):
forward substitution.

So could solve Ax = b by

_ Qy=>b =y=Q"b
4 =QR and { Rx = y back subs. asR upper triangular

But % the number of operations (and other advantages e.qg.

for sparse) to perform LU factorisation: based on Gauss
elimination (successively create zeros below diagonal by
following algorithm)

Gauss Elimination:

forcolumnsj =1,...,n —1
forrowst=73+1,...,n
calculate multiplier I;; = (a;j/a;;), (aj; Is the pivot)
OW ¢ «— row ¢ — l;; * row j (%)
end ¢
end j

(x)fork=34+1,...,n
ai < Qi — lija
end k

reduces to upper triangular matrix U without changing

solution in ~ gn?’ operations.

Back substitution = solution

NLA — p.3/1:

If store multiplier I;; used to zero a;; as i, 3 entry of a unit
lower triangular matrix L then

B | Ly =b forward subs.
A = LU with { Ux =y back subs.

solves Ax = b.

Note: For many b’s need only 1 LU factorization.

Recall a;; # 0 necessary for Gauss Elimination so fails on

e.g.

X (1)] which is non-singular.

NLA — p.4/1;

Pivoting:
Row interchanges: often expressed as PA = LU, P
permutation.

Partial pivoting: when zeroing subdiagonal of p** column
find max |a;p| = |m|, 2 =p,p+1,...,n;
m becomes pivot

swap row p with row which gives this max.

Falls if and only if A singular as
app =0,m=0= detA=0

NLA — p.5/1:

Special forms

e A Symmetric positive definite: A = LLT, L lower
triangular, Cholesky factorisation.

e A Symmetric Indefinite: A = LDLT, L lower
triangular, D block diagonal, 1 x 1 and 2 x 2 blocks:
Bunch - Parlett, Bunch - Kaufmann factorizations.

e A Banded: eliminate only in band, ~ $nb? operations

for LU
(NB pivoting generally destroys bandedness)

e A Sparse: good software e.g. HSL or \ for sparse Iin
matlab.

NLA — p.6/1:

lll-conditioning

Proposition: If Ax =b (1) and A(x 4+ dx) = b+ db (2)
then

lo=]l _ |0b]]
< [AIATH I
[z o]

Proof: A=1((2) — (1)) = 6z = A~ 16b

o ||6al = [|A~"abl| < (| A~]||6b]
also [[b]] = || Azl < || All|lz]
1Al
ol = ol
|5 _yy 8t
so- o <[l
B ol
T T T

relative change in solution condition number relative perturbation of rhs

NLA — p.7/1:

Also If A is perturbated to A + 6 A then

|z + 0z || IIAII
(Exercise: Show this)
These results identify k = || A||||A~1|| (the ‘condition

number’ for solution of linear systems) as a measure of
ll-conditioning.

Usually necessary If large « to reformulate problem
because:

Gauss elimination finds & such that» = b — Az IS small
(not exactly « s.t. Ax = b) on a computer.

For many A, » small = e = & — x is small but not when
IS large as indicated by the above results.

NLA — p.8/1:

Example: Interpolation: Given IN and data f(x;) at distinct

points x;,7 = 0,1, ..., N, find polynomial
p(x) = > 1_,arz® € II, such that

p(x;) = f(x;)-

This can be written as: solve

1 x¢ :13(2) cee I T ag |
1 x1 = xy aq
1 xo :133 vee Ty a2 _
1 x, x2 x a
i n n n | L%n _

" f(xo)]
f(x1)
f(x2)

| f@n)

NLA — p.9/1:

Forax, =k + 1,

expected accuracy

n=4 kK=2-6x10* 12decima
n=8 kK=4-2x 1019 6 decimalp
n=12 k=4-2x 107 0 decimal p
n=16 k=1-9Xx 10%° no hope of

nlaces
aces

aces
accurate solution

but can reformulate the interpolation problem in many ways
e.g. use a better basis for I than {1, z, z2%,...,z2"V}.

In fact for this problem there are reliable
methods (GVL pl183 Vandermonde)

and faster (O(IN?))

NLA — p.10/1

NLA — p.11/1

lterative solution methods for Az = b
idea: split A = M — N, so easy to solve systems with M,
then iterate:

Guess 2(0)

solve Mz®) = Nz*—1D 4 p for k=1,2,...
basic point: if {(¥)} converges (to x, say) then
Mx=Nx+b, 1e. Ax=0b

le. it converges to the solution.

NLA — p.12/1

NLA — p.13/1

	
	
	
	
	
	
	
	
	
	
	
	
	

