## Iterative solution methods for $Ax = b, A \in \mathbb{R}^{n imes n}$

*idea*: split A = M - N, so easy to solve systems with M, then iterate:

Guess  $x^{(0)}$ solve  $Mx^{(k)} = Nx^{(k-1)} + b$  for k = 1, 2, ...basic point: if  $\{x^{(k)}\}$  converges (to x, say) then Mx = Nx + b, ie. Ax = b

ie. it converges to the solution.

Jacobi's method: M = diag(A), (N = A - M)In practice: componentwise

for iterates  $k = 1, 2, \dots$ for rows (equations)  $i = 1, \dots, n$ 

$$x_{i}^{(k)} = rac{1}{a_{i,i}} \left( -\sum_{j=1, j 
eq i}^{n} a_{i,j} x_{i}^{(k-1)} + b_{i} 
ight)$$

endo endo

better ? use most recently updated value of  $x_i$ 

for iterates  $k = 1, 2, \dots$ for rows  $i = 1, \dots, n$ 

$$x_i^{(k)} = \frac{1}{a_{i,i}} \left( -\sum_{j=1}^{i-1} a_{i,j} x_j^{(k)} - \sum_{j=i+1}^n a_{i,j} x_j^{(k-1)} + b_i \right)$$
endo endo

This is Gauss-Seidel iteration: rearranging  $\sum_{j=1}^{i}a_{ij}x_{j}^{(k)}=-\sum_{j=i+1}^{n}a_{ij}x_{j}^{(k-1)}+b_{i}$ 

which is  $(L+D)x^{(k)} = -Ux^{(k-1)} + b$ 

when D = diag(A), L = strict lower triangular of A, U = strict upper triangular of Ai.e. Solve  $Mx^{(k)} = Nx^{(k-1)} + b$ , M = L + D is achieved by forwards substitution. better still ? take Gauss-Seidel  $x^{(k)}$  iterate and average with  $x^{(k-1)}$ 

$$\begin{split} x_i^{(k)} &= \omega \underbrace{\left( b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \right) \frac{1}{a_{ii}} + (1-\omega) x_i^{(k-1)}}_{\text{exactly as in Gauss-Seidel}} \end{split}$$

- $\omega \in \mathbb{R}$  relaxation parameter
  - $\omega < 1$  gives underelaxation cautious & slow
  - $\omega = 1$  Gauss-Seidel
  - $\omega > 1$  overelaxation

 $\Rightarrow$  Successive Overelaxation Method (SOR)

By rearranging as for Gauss-Seidel: matrix form

$$(D+\omega L)x^{(k)}=\omega b+\left[(1-\omega)D-\omega U
ight]x^{(k-1)}$$

NLA – p.5/13

Symmetry sometimes useful to preserve, so if A symmetric ( $\Leftrightarrow U = L^T$ ): Symmetric SOR (SSOR)

$$egin{aligned} (D+\omega L)x^{(k-rac{1}{2})} &= \omega b + \left[(1-\omega)D - \omega U
ight]x^{(k-1)} \ (D+\omega U)x^{(k)} &= \omega b + \left[(1-\omega)D - \omega L
ight]x^{(k-rac{1}{2})} \end{aligned}$$

corresponds to  $M = (D + \omega L)D^{-1}(D + \omega U)$  which is symmetric.

Important point: if A sparse then these methods only need use the non-zero entries of A e.g.

$$\sum_{j=1}^{i-1}a_{ij}x_j^{(k)}$$
 becomes  $\sum_{\{j < i: a_{ij} 
eq 0\}}a_{ij}x_j^{(k)}$ 

Convergence of simple iterations:

$$\begin{split} M^{-1}N \text{ is called the iteration matrix} \\ &\text{So } \|x - x^{(k)}\| \to 0 \text{ at least if} \\ \|(M^{-1}N)^k\| \|x - x^{(0)}\| &\leq \underbrace{\|M^{-1}N\|^k}_{\uparrow} \underbrace{\|x - x^{(0)}\|}_{\text{unknown error in initial guess}} \\ &\to 0 \text{ if } \|M^{-1}N\| < 1 \end{split}$$

this is a sufficient condition for convergence.

**Notation** 

 $ho(A) = \max \{ |\lambda| : \lambda \text{ an eigenvalue of } A \}$ the spectral radius

## <u>Theorem</u>

If  $M^{-1}N$  is diagonalisable, then  $\|x-x^{(k)}\| \to 0$  as  $k \to \infty$  for any initial guess  $x^{(0)}$  if and only if  $ho(M^{-1}N) < 1$ 

But diagonalisation is not necessary since even if  $M^{-1}N$  is not diagonalisable, it is triangularisable

i.e.  $\exists$  triangular matrix T with  $M^{-1}N = QTQ^T$  for some orthogonal matrix Q (Schur decomposition).

More useful for our purpose here (only!) is the existence of a *Jordan canonical form*:

$$M^{-1}N = XJX^{-1}, J = \left[ egin{array}{ccc} J_1 & & O \ & \ddots & \ & & \ddots & \ & & & J_p \end{array} 
ight]$$

where  $J_i \in \mathbb{R}^{n_i imes n_i}$  and  $\sum_{i=1,...,p} n_i = n$  with

$$J_i = egin{bmatrix} \lambda_i & 1 & & \ & \ddots & \ddots & \ & & \ddots & 1 & \ & & & \lambda_i \end{bmatrix}$$

This is a Jordan block

Thus  $(M^{-1}N)^k = (XJX^{-1})^k = XJ^kX^{-1}$  and, as  $k \to \infty$ 

$$(M^{-1}N)^k \to 0 \Leftrightarrow J^k \to 0 \Leftrightarrow J^k_i \to 0 \text{ all } i.$$

That is, we obtain convergence if and only if for every Jordan block, its powers tend to zero as  $k \to \infty$ .

First consider if  $\lambda_i = 0$ , then write  $J_i = \widehat{J} \in \mathbb{R}^{\widehat{n} \times \widehat{n}}$  and



and generally the diagonal of 1's moves up toward the top right for each succesive power. Thus  $\widehat{J^n} = 0$ 

Now consider when  $\lambda_i \neq 0$ : we have

$$\begin{split} J_i^k &= \left(\lambda_i I + \widehat{J}\right)^k \\ &= \sum_{r=0}^k \left(\begin{array}{c}k\\r\end{array}\right) \widehat{J}^r \ \lambda_i^{k-r} \quad \text{since } I, \widehat{J} \text{ commute} \\ &= \sum_{r=0}^{n_i} \left(\begin{array}{c}k\\r\end{array}\right) \widehat{J}^r \ \lambda_i^{k-r} \\ &\to 0 \quad \text{as } k \to \infty \text{ since } \lambda_i^{k-r} \to 0 \\ &\quad \text{if and only if } |\lambda_i| < 1 \text{ each } i. \end{split}$$

Thus  $(M^{-1}N)^k \to 0$  as  $k \to \infty \Leftrightarrow |\lambda_i| < 1$  each i, hence convergence since  $x - x^{(k)} = (M^{-1}N)^k (x - x^{(0)})$ .

Note the powers of J can grow considerably before eventual convergence.