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Iterative solution methods for Az = b, A € R*Xn

idea: split A = M — NN, so easy to solve systems with M,
then iterate:

Guess 2 (0)

solve Mz¥) = Nz*k=1D 1 p for k=1,2,...
basic point: if {(¥)} converges (to x, say) then
Mx = Nx+b, Ile. Ax =0b

le. it converges to the solution.
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Jacobi’'s method: M = diag(A), (N = A — M)
In practice: componentwise
for iterates k =1, 2,...

for rows (equations)z = 1,...,n
1 n
k k—1
o) =— = X eV +b
bt J=1,57#1
endo
endo

better ? use most recently updated value of x;

NLA — p.3/13



for iterates k =1, 2,...
forrows:=1,...,n

1 ik _
(k) Z az,Ja:(k) Z a,,;,jzlzg.k 1) + b;

j=1+1
endo

endo

This Is Gauss-Seidel iteration: rearranging

Z aijw§k) = — Z a,,;ja?g-k_l) + b;
j=1

j=i+1
whichis (L + D)z® = —Uz2®-1) 1 p

when D = diag(A), L = strict lower triangular of A, U =
strict upper triangular of A

i.e. Solve Mz() = Nz*k—1) 4+ b, M =L+ Dis
achieved by forwards substitution.
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better still ? take Gauss-Seidel x(¥) jterate and average
with z(k—1)

1
2 o (b, —Z% (k) Z ai;z® 0 | Ly (1—w)etY
a;

exactly as in ‘Gauss-Seidel

w € R relaxation parameter

w < 1 gives underelaxation cautious & slow

w =1 Gauss-Seidel

w > 1 overelaxation = Successive Overelaxation
Method (SOR)

By rearranging as for Gauss-Seidel: matrix form

(D 4+ wL)z® = wb+ [(1 — w)D — wU] z*~Y
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Symmetry sometimes useful to preserve, so if A symmetric

(< U = LT):

Symmetric SOR (SSOR)

(D + wL)w(k_% =
(D 4+ wU)z® =

wb -

wb -

(1 — w)D — wU] 2* Y
- [(1 — w)D — wL] z* 2

corresponds to M = (D 4+ wL)D~ (D 4 wU) which is

symmetric.

Important point: if A sparse then these methods only need
use the non-zero entries of A e.qg.

i—1
S a2l becomes Y gyl

=1

J
{7<i:a:;7#0}
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Convergence of simple iterations:

Mz® = Nz~ 1 p
and Ar =b= Mx = Nxz+b (A= M-—N)

so M(z —z®)) = N(z—z*)
z— 2% = M IN@—z*D)
= (M IN)* (@ — 2®)

M 1N is called the iteration matrix

So ||z — =) || — 0 at least if

(MNP l[le — 2@ < IMTIN|E [z — 2]

\ .

Y Y

T unknown error in initial guess

S 0if|[M7IN| < 1

this is a sufficient condition for convergence.
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Notation
p(A) = max {|A| : XA an eigenvalue of A}
the spectral radius

Theorem

If M—1N is diagonalisable, then ||z — z(*)|| — 0 as
k — oo for any initial guess z(®) if and only if
p(M~IN) <1
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But diagonalisation is not necessary since even if M1 is
not diagonalisable, it is triangularisable

i.e. 3 triangular matrix T with M—1N = QT Q" for some
orthogonal matrix @@ (Schur decomposition).

More useful for our purpose here (only!) is the existence of
a Jordan canonical form:

- 7 O -
M IN=XJX"1J=
O Jp
where J; € R™*™ and ) ,_, m; =nwith
a1 _
J; =
1
I Ai _

This iIs a Jordan block



Thus (M~ IN)* = (XJX 1)k = XJ* X1 and, as
k — oo

(MINY s 0< J" 50< J° — 0 all i

That Is, we obtain convergence if and only if for every
Jordan block, its powers tend to zero as k — oo.

First consider if A\; = 0, then write J; = J € R**™ and

0

1 "0 0 1 ]
0 1 00 1

oo -

0O 1
0

o O -

and generally the diagonal of 1's moves up toward the top
right for each succesive power. Thus J% =0
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Now consider when \; # 0: we have
Nk
gk = (AiI n J)

k
= ( k ) J" AF=" since I,J commute

I"b

= (k)i

r=0
—~0 ask — oosince AF™" — 0
If and only If |A;| < 1 each s.

Thus (M—IN)* - 0ask — oo < |\;| < 1 each i, hence
convergence since x — (k) = (M~IN)*¥(x — 2(9)),

Note the powers of J can grow considerably before
eventual convergence.
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