
NLA – p.1/13

Iterative solution methods for Ax = b, A ∈ R
n×n

idea: split A = M − N , so easy to solve systems with M ,
then iterate:

Guess x(0)

solve Mx(k) = Nx(k−1) + b for k = 1, 2, . . .

basic point: if {x(k)} converges (to x, say) then

Mx = Nx + b, ie. Ax = b

ie. it converges to the solution.

NLA – p.2/13

Jacobi’s method: M = diag(A), (N = A − M)

In practice: componentwise

for iterates k = 1, 2, . . .
for rows (equations) i = 1, . . . , n

x
(k)
i =

1

ai,i


−

n∑

j=1,j 6=i

ai,jx
(k−1)
i + bi




endo
endo

better ? use most recently updated value of xi

NLA – p.3/13

for iterates k = 1, 2, . . .
for rows i = 1, . . . , n

x
(k)
i =

1

ai,i


−

i−1∑

j=1

ai,jx
(k)
j −

n∑

j=i+1

ai,jx
(k−1)
j + bi




endo
endo

This is Gauss-Seidel iteration: rearranging
i∑

j=1

aijx
(k)
j = −

n∑

j=i+1

aijx
(k−1)
j + bi

which is (L + D)x(k) = −Ux(k−1) + b

when D = diag(A), L = strict lower triangular of A, U =
strict upper triangular of A
i.e. Solve Mx(k) = Nx(k−1) + b, M = L + D is
achieved by forwards substitution.

NLA – p.4/13

better still ? take Gauss-Seidel x(k) iterate and average
with x(k−1)

x
(k)
i = ω


bi −

i−1∑

j=1

aijx
(k)
j −

n∑

j=i+1

aijx
(k−1)
j


 1

aii

︸ ︷︷ ︸
exactly as in Gauss-Seidel

+(1−ω)x
(k−1)
i

ω ∈ R relaxation parameter
ω < 1 gives underelaxation cautious & slow
ω = 1 Gauss-Seidel
ω > 1 overelaxation ⇒ Successive Overelaxation

Method (SOR)

By rearranging as for Gauss-Seidel: matrix form

(D + ωL)x(k) = ωb + [(1 − ω)D − ωU]x(k−1)
NLA – p.5/13

Symmetry sometimes useful to preserve, so if A symmetric
(⇔ U = LT):
Symmetric SOR (SSOR)

(D + ωL)x(k−1

2
) = ωb + [(1 − ω)D − ωU]x(k−1)

(D + ωU)x(k) = ωb + [(1 − ω)D − ωL]x(k−1

2
)

corresponds to M = (D + ωL)D−1(D + ωU) which is
symmetric.

Important point: if A sparse then these methods only need
use the non-zero entries of A e.g.

i−1∑

j=1

aijx
(k)
j becomes

∑

{j<i:aij 6=0}

aijx
(k)
j

NLA – p.6/13

Convergence of simple iterations:

Mx(k) = Nx(k−1) + b

and Ax = b ⇒ Mx = Nx + b (A = M−N)

so M(x − x(k)) = N(x − x(k−1))

x − x(k) = M−1N(x − x(k−1))

= (M−1N)k(x − x(0))

M−1N is called the iteration matrix

So ‖x − x(k)‖ → 0 at least if

‖(M−1N)k‖‖x − x(0)‖ ≤ ‖M−1N‖k︸ ︷︷ ︸
↑

‖x − x(0)‖︸ ︷︷ ︸
unknown error in initial guess

→ 0 if ‖M−1N‖ < 1

this is a sufficient condition for convergence.
NLA – p.7/13

Notation
ρ(A) = max {|λ| : λ an eigenvalue of A}
the spectral radius

Theorem
If M−1N is diagonalisable, then ‖x − x(k)‖ → 0 as
k → ∞ for any initial guess x(0) if and only if
ρ(M−1N) < 1

NLA – p.8/13

NLA – p.9/13

But diagonalisation is not necessary since even if M−1N is
not diagonalisable, it is triangularisable
i.e. ∃ triangular matrix T with M−1N = QTQT for some
orthogonal matrix Q (Schur decomposition).
More useful for our purpose here (only!) is the existence of
a Jordan canonical form:

M−1N = XJX−1, J =




J1 O
. . .

O Jp




where Ji ∈ R
ni×ni and

∑
i=1,...,p ni = n with

Ji =




λi 1
.

. . . 1
λi




This is a Jordan block NLA – p.10/13

Thus (M−1N)k = (XJX−1)k = XJkX−1 and, as
k → ∞

(M−1N)k → 0 ⇔ Jk → 0 ⇔ Jk
i → 0 all i.

That is, we obtain convergence if and only if for every
Jordan block, its powers tend to zero as k → ∞.

First consider if λi = 0, then write Ji = Ĵ ∈ R
n̂×n̂ and

Ĵ =




0 1
0 1

.
.

0 1
0




, Ĵ2 =




0 0 1
0 0 1

.
0 0 1

0 0
0




and generally the diagonal of 1’s moves up toward the top
right for each succesive power. Thus Ĵ n̂ = 0 NLA – p.11/13

Now consider when λi 6= 0: we have

Jk
i =

(
λiI + Ĵ

)k

=

k∑

r=0

(
k

r

)
Ĵr λ

k−r
i since I, Ĵ commute

=

ni∑

r=0

(
k

r

)
Ĵr λk−r

i

→ 0 as k → ∞ since λ
k−r
i → 0

if and only if |λi| < 1 each i.

Thus (M−1N)k → 0 as k → ∞ ⇔ |λi| < 1 each i, hence
convergence since x − x(k) = (M−1N)k(x − x(0)).

Note the powers of J can grow considerably before
eventual convergence.

NLA – p.12/13

NLA – p.13/13

	
	
	
	
	
	
	
	
	
	
	
	
	

