NLA – p.1/10

Idea of a 'smoother' leads to Multigrid

guess u^0 on fine grid <u>smooth</u> (i.e. for 3 relaxed Jacobi iteration) $u^0 \rightarrow u^s$ $u - u^s = e^s$ smoother than $u - u^0 = e^0$ $Ae^s = Au - Au^s = b - Au^s = r^s$ (residual)

same as original problem, but $e^s \underline{smoother} \Rightarrow solve on$ coarser grid i.e. use a coarse grid representation \overline{A} of Aand solve $\overline{A}\overline{e}^s = \overline{r}^s$ where $\overline{e}^s, \overline{r}^s$ are coarse grid restrictions of e^s, r^s respectively. So need grid transfer operators:

Restriction: fine \rightarrow coarse

Prolongation: coarse \rightarrow fine

Prolongation:

$$egin{bmatrix} 1 & 0 & 0 & 0 \ rac{1}{2} & rac{1}{2} & 0 & 0 \ 0 & 1 & 0 & 0 \ rac{1}{2} & 0 & rac{1}{2} & 0 \ rac{1}{2} & 0 & rac{1}{2} & 0 \ rac{1}{2} & 0 & rac{1}{2} & 0 \ rac{1}{4} & rac{1}{4} & rac{1}{4} & rac{1}{4} \ 0 & rac{1}{2} & 0 & rac{1}{2} \ 0 & 0 & 1 & 0 \ 0 & 0 & rac{1}{2} & rac{1}{2} \ 0 & 0 & 0 & 1 \ \end{pmatrix} & egin{pmatrix} x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_7 \ x_9 \ \end{pmatrix} & = egin{pmatrix} x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_8 \ x_9 \ \end{pmatrix} \ \uparrow P$$

Restriction:

normally $R = lpha P^T$ where $lpha \in \mathbb{R}$ is such that

$\alpha P^T P \mathbf{e} = \mathbf{R} \mathbf{P} \mathbf{e} = \mathbf{e}$

 ${\bf e}$ being the vector of all ones

eg. $\alpha = \frac{4}{9}$ for the *P* above.

Basic point:

if
$$x = P\overline{x}$$
 \overline{x} 'short'
or $\overline{x} = Rx$ x 'long'

then little loss of accuracy if and only if x is a 'smooth vector' i.e. a vector of coefficients representing a non-oscillatory function.

Coarse grid operator: \overline{A} : 2 possibilities:

(i) 5 point formula on 2h mesh

(ii) $\overline{A} = RAP = \alpha P^T AP$ (Galerkin coarse grid operator)

2-grid algorithm:

Choose
$$u_0$$

for two - grid iterations $i = 0$ until convergence do
 $(pre-)smooth: u_i \rightarrow u^s$
calculate residual: $r^s = b - Au^s$
restrict residual: $r^s \rightarrow \overline{r}^s$ $(\overline{r}^s = Rr^s)$
solve $\overline{A} \ \overline{e}^s = \overline{r}^s$ to get coarse grid correction
prolong: $\overline{e}^s \rightarrow e^s$ $(e^s = P\overline{e}^s)$
update: $u_{i+1} \leftarrow u^s + e^s$
(sometimes) post - smooth: $u_{i+1} \rightarrow u_{i+1}$
enddo

Note:

$$u_{i+1} \leftarrow u^s + P\overline{A}^{-1}R(b - Au^s)$$

If smoother is based on a splitting A = M - N then the iteration matrix is $M^{-1}N$ and we have eg. for 2 smoothing steps (so $u^s = u^{(2)}$)

$$\begin{split} & u^{(1)} &= (M^{-1}N)u^{(0)} + M^{-1}b \\ & u^{(2)} &= (M^{-1}N)u^{(1)} + M^{-1}b \\ &= (M^{-1}N)^2 u^{(0)} + (I + M^{-1}N)M^{-1}b \quad (\star) \end{split}$$

but also the exact solution satisfies

$$\begin{split} u &= (M^{-1}N)u + M^{-1}b \\ \Rightarrow u &= (M^{-1}N)^2 u + (I + M^{-1}N)M^{-1}b \qquad (+) \\ \text{so } (+) - (\star) \text{ gives} \end{split}$$

$$u - u^{(2)} = (M^{-1}N)^2(u - u^{(0)}).$$

Note also for the residual using (\star) and (+) we have

$$b - Au^{(2)} = A(u - u^{(2)}) = A(M^{-1}N)^2(u - u^{(0)}).$$

So 2-grid iterate is

$$egin{array}{rll} u^{(2)} &+& P \overline{A}^{-1} R (b - A u^{(2)}) \ &=& u^{(2)} + P \overline{A}^{-1} R \ A \ (M^{-1} N)^2 (u - u^{(0)}) \end{array}$$

so that the error after a single 2-grid iteration is

$$u - u^{(2)} - P\overline{A}^{-1}R A (M^{-1}N)^2 (u - u^{(0)})$$

= $(A^{-1} - P\overline{A}^{-1}R) A (M^{-1}N)^2 (u - u^{(0)})$

In general the j^{th} 2-grid iteration (for iterate u_j with $u^{(0)} = u_0$) is

$$egin{aligned} &u_j = ig[(M^{-1}N)^2 u_{j-1} + (I+M^{-1}N)M^{-1}big] + \ &P\overline{A}^{-1}R \left(b-A \left[(M^{-1}N)^2 u_{j-1} + (I+M^{-1}N)M^{-1}b
ight]
ight) \end{aligned}$$

and the error $e_j = u - u_j$ therefore satisfies

$$e_j = (A^{-1} - P\overline{A}^{-1}R) A (M^{-1}N)^2 e_{j-1}$$

or in general if ν pre-smoothing steps and μ post-smooting steps are used

$$e_j = (M^{-1}N)^\mu (A^{-1} - P\overline{A}^{-1}R) ~~A ~(M^{-1}N)^
u e_{j-1}$$