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e; = (M IN)*(A™' — PA'R) A (M 'N)"e;_;

Convergence depends on
e Smoothing (as above)

e Approximation: R and P must sufficiently accurately

reproduce smooth vectors and A sufficiently accurately
represent A
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In mathematical terms: we use the regular Euclidean norm

| - || and || - || a defined by ||z||3 = =T Az which is a norm
when A is symmetric and positive definite, and establish

e the Smoothing Property: for all y

A (M~'N)*y|| < n() |lylla

with n(v) — 0 as v — oo being independent of n
(n =dimension of A)

e the Approximation Property: for all y, there exists C
Independent of n with

_ ——1
(A= — PA "R)y|la < Cllyl.

Immediately we have
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Theorem: if the Smoothing and Approximation properties
hold then 2-grid iteration with no post-smoothing converges
at a rate independent of n.

Proof:

|(A™' = PAT'R) A (M~'N)“ej_1]la

C||A (M~ 'N)’e;_1]|  (Approx. Property)
Cn(v) |lej-1lla (Smoothing Property)
N —

lejlla

IA A

—0 AdS v—>o0

so 3 a number of smoothing steps v independent of n with

lejlla < vllej-1lla

with v < 1. O
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Approximation Property: rough sketch (depends on finite
difference error)

A~'b < mesh solution on mesh h < wuy,

PA "Rb <+ mesh solution on mesh 2h <« Uop,

_ ——1
so |[(A™' — PA "R)b||a ~ |un — uan| ~ ||b]| any b.
Smoothing Property: we prove only for relaxed Jacobi :

0
M IN=01-0I-6D Y (L+U)=1—-6D"1'A = I—ZA
as D = 41 for 5 point formula.

Theorem: if the eigenvalues of M~1N lie in [—ao, 1] with
0 < o < 1 being independent of n, then the smoothing
property holds.

(Recall: & = £ = eigenvalues of M—!N € (0,1).)

NLA — p.5/9



Proof: let {z1,..., z,} be the orthonormal eigenvector
basisof I — (8/4)Aand y = ) ¢;z;,
(I —(0/4)A)z; = Njz;. Then Az; = (4/0)(1 — \;)z; SO

(4/6) Y ey (1 — Xg)z;,
(16/6%) > " c2AZV(1 — X;)?
as Z,?Zj = 52',3'. Now \; € [—0’, 1] = )\,?V(l — )\i) 1S

maximal either at the stationary point A\; = 2v/(2v + 1) or
when \; = —o so that

1 1
max A (1 — ;) < max{g 2,0'2”(1 -+ 0')}

AM~IN)y

and  [|A(M™IN)"y|?

Ai€[—o,1]
cince 2V | 1 1 _ 11
2v+1) 2v+1 2v (1+1/20)2v+1 — 2 e

and (1 + 1/2v)?" 11  e(=2.718...) asv — oo.
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Thus

lA(M~IN) y|?

< max <

max <

e 21/1
6921/’90 (1+0)
4 1 4 ,

_~ —  Z5%(1
025" 9° (119)

e

\
Clyll%

n(r)—0 aS v—oo
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Notes:

e Can be extended to Multigrid by replacing the coarse
grid solve A e®* = 73 recursively by a 2-grid iteration:
just apply Gauss Elimination when very small
dimensional coarse space. n-independent convergence
IS preserved.

e Other smoothers,prolongation and restriction operators
and more general problems can be analysed in a
similar way.

e Work per iteration depends linearly on problem size

(n?). Number of iterations for convergence independent
of n = optimal solver (ie. O(IN) work to solve an
N x N linear system.

(cf. O(IN?) for Gauss Elimination).

NLA — p.8/9



NLA — p.9/9



	
	
	
	
	
	
	
	
	

