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ej = (M−1N)µ(A−1 − PA
−1

R) A (M−1N)νej−1

Convergence depends on

• Smoothing (as above)

• Approximation: R and P must sufficiently accurately
reproduce smooth vectors and A sufficiently accurately
represent A
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In mathematical terms: we use the regular Euclidean norm
‖ · ‖ and ‖ · ‖A defined by ‖x‖2A = xTAx which is a norm
when A is symmetric and positive definite, and establish

• the Smoothing Property: for all y

‖A (M−1N)νy‖ ≤ η(ν) ‖y‖A

with η(ν) → 0 as ν → ∞ being independent of n
(n =dimension of A)

• the Approximation Property: for all y, there exists C
independent of n with

‖(A−1 − PA
−1

R)y‖A ≤ C‖y‖.

Immediately we have
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Theorem: if the Smoothing and Approximation properties
hold then 2-grid iteration with no post-smoothing converges
at a rate independent of n.
Proof:

‖ej‖A = ‖(A−1 − PA
−1

R) A (M−1N)νej−1‖A

≤ C‖A (M−1N)νej−1‖ (Approx. Property)

≤ Cη(ν)
︸ ︷︷ ︸

→0 as ν→∞

‖ej−1‖A (Smoothing Property)

so ∃ a number of smoothing steps ν independent of n with

‖ej‖A ≤ γ‖ej−1‖A

with γ < 1.
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Approximation Property: rough sketch (depends on finite
difference error)

A−1b ↔ mesh solution on mesh h ↔ uh

PA
−1

Rb ↔ mesh solution on mesh 2h ↔ u2h

so ‖(A−1 − PA
−1

R)b‖A ∼ |uh − u2h| ∼ ‖b‖ any b.

Smoothing Property: we prove only for relaxed Jacobi :

M−1N = (1−θ)I−θD−1(L+U) = I−θD−1A = I−
θ

4
A

as D = 4I for 5 point formula.

Theorem: if the eigenvalues of M−1N lie in [−σ, 1] with
0 ≤ σ < 1 being independent of n, then the smoothing
property holds.

(Recall: θ = 1
2
⇒ eigenvalues of M−1N ∈ (0, 1).)
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Proof: let {z1, . . . , zn} be the orthonormal eigenvector
basis of I − (θ/4)A and y =

∑
cizi,

(I − (θ/4)A)zi = λizi. Then Azi = (4/θ)(1 − λi)zi so

A(M−1N)νy = (4/θ)
∑

ciλ
ν
i (1 − λi)zi,

and ‖A(M−1N)νy‖2 = (16/θ2)
∑

c2iλ
2ν
i (1 − λi)

2

as zT
i zj = δi,j. Now λi ∈ [−σ, 1] ⇒ λ2ν

i (1 − λi) is
maximal either at the stationary point λi = 2ν/(2ν + 1) or
when λi = −σ so that

max
λi∈[−σ,1]

λ2ν
i (1 − λi) ≤ max

{
1

2ν

1

e
, σ2ν(1 + σ)

}

since
(

2ν

2ν + 1

)2ν 1

2ν + 1
=

1

2ν

1

(1 + 1/2ν)2ν+1
≤

1

2ν

1

e

and (1 + 1/2ν)2ν+1 ց e(= 2.718 . . .) as ν → ∞.
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Thus

‖A(M−1N)νy‖2

≤ max

{
4

eθ

1

2ν
,
4

θ
σ2ν(1 + σ)

}
∑

c2i
4

θ
(1 − λi)

= max

{
4

eθ

1

2ν
,
4

θ
σ2ν(1 + σ)

}

︸ ︷︷ ︸

η(ν)→0 as ν→∞

‖y‖2A
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Notes:

• Can be extended to Multigrid by replacing the coarse
grid solve Aes = rs recursively by a 2-grid iteration:
just apply Gauss Elimination when very small
dimensional coarse space. n-independent convergence
is preserved.

• Other smoothers,prolongation and restriction operators
and more general problems can be analysed in a
similar way.

• Work per iteration depends linearly on problem size
(n2). Number of iterations for convergence independent
of n ⇒ optimal solver (ie. O(N) work to solve an
N × N linear system.
(cf. O(N3) for Gauss Elimination).
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