Krylov Subspace Methods

A e R™™ rcR”
If A sparse or specially structured, so easy to compute
Ar, A(Ar),...
.e. r, Ar, A%r,...
are easy to compute, then Krylov subspaces
Ki(A,r) = span {r, Ar,..., A¥"1r}
are convenient nested vector subspaces (exercise: check).

Note y € Kp(A,7) & y=qr-1(4)70
where qi_1 € I1;_1 (real polynomials of degree < k — 1.)
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If solving Az = b, (A invertible), guess xg¢, 79 = b — Axy,
then look for

xr € xg + Kr(A,r9) .7 =b— Axp, k=1,2,...
r, € o+ Kr(A,ro0)
< T = To+ qr—1(A)T0

= r—xp = T —xg— qr_1(A)rg

= fl(az — mk)J fl(az — mOZ—A qr—1(A)7rg

b—ka %
|
Tk
l.e. rr = pr(A)ro ,pr € Il ,pr(0) =1

o A7, = pk(A)A_lro l.e. ex = pr(A)eg, e = x — xk
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Krylov Subspace Methods

Most common Krylov subspace methods are characterised

by
re = pr(A)ro ,pr € Il ,pr(0) =1

AND some optimality condition

e.d. ||rk||2 should be minimal over xg € xg + ICx (A, 79).

Kk(Aa TO) = Span {To, A’I“(), s Ak_l’rO}
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First step is however to compute a good basis for IC (A, 1)
since A*rg tends to point in a single direction:

If rog = Za,,;z,,;,Az,,; = \;Z; and if |)\1| > |)\j|,j # 1 then

Ak’l“()

Note also ||A*rg|| — 0 or co depending on whether

|>\1| < 1lor |>\1| >1
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Arnoldi’'s method:

guess xg , 9 = b — AQZO s V1 = T0/||T0||2

forl =1,2,...
w = Av;
forg=1,...,1
hjl = v;fw
w=w — hjlvj
end
hiy1, = [|w]|2

Vi41 = w/hyy1
end

IS a way of generating an orthonormal basis
{vi,v2,...,0} fOr ICp(A, 19)
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In matrix form we can write Arnoldi as

AV = Vi Hy + hgyi1k

where

Vi

IS upper Hessenberg

Vg

+1

Vi1 Hy

, has orthogonal columns,

c kak
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" hi1 hig --- hir |
hoi hoy +ov oo oy
and H,, = O haz - c R(k+1)xk
0 - 0 hgpr—1 hg
0 - 0 0 hpyig
_ Hy (k+1)xk
0 -« 0 0 hgsrp | N

Note: Vi, € R™** has orthogonal columns
= VIV, =1 e RF*so

B |
AV = ViHp+hgy1 |1 0 0 -0 vy | = VkTAVk = Hp
|
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Now
xp € o+ Kg(A,1r0) & T, = To + Viy

for some y € R* since {vy...vg} IS an orthonormal basis
for ICx (A, rg). Also

T = xo + Vey & T —xp = T — 29— V0Y

A(x — xp) A(x — xg) — AVry
l.e. r, = 19— AV3Ly

SO ||7%||2 is minimal < y € R¥ is such that ||rg — AV4y||2 iS

minimal.
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|7% |2 is minimal < y € R¥ is such that ||[rg — AVpy||2 is
minimal.

But ro = ||ro||vi = ||7o||Vker = ||7o||Vi+1e1,
e] =[1,0,...,0]

and by above AV}, = Vi1 Hy, SO
I7k|l2 is min < || Vig1(||lroller — Hry)l[., is min
but qujl_lvk+1 =1 € R(E+1) X (k+1) asS {’Ul, c oo ’Uk_|_1}

are orthonormal

so required vector y Is that which minimises the linear least
sguares problem

H||"°0||€1 — I:Iksz
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Required vector y is that which minimises the linear least
sguares problem

H||"°0||€1 — I:Iksz

= need QR factorisation of the rectangular Hessenberg

matrix H; c Rkt1xk
which can be achieved by one additional Givens rotation for

each k since Hy, is built up by appending the last column
for each k.

(see Exercises)
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This is the basis of the GMRES algorithm
(Generalised Minimal Residual Method)

xro , To = b — Axo, v1 = T0/||70||
Fork =1,2,...

do step k of the Arnoldi algorithm

(= have vy,v2...v541 and H;, )
NV ad ~
new last column new

solve the Hessenberg linear least squares problem
y = argmin ||||rollexr — Hyyl,

T = To + Viy
end
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As before the Hessenberg least squares problem is solved
by QR factorisation of Hj, using k + 1 Givens rotations, but

since H}, is the same as Hj,_, except for one additional
row and column this can be implemented as only 1 Givens
rotation for each k. (see exercises)

Notes:

1. ||rk||2 Is the linear least squares error in the
Hessenberg least squares problem.

2. xp only needs to be calculated if ||| satisfies the
stopping criterion ||rg|| < TOL.

3. work at k! GMRES iteration is O(k?) for the least
sguares solution + 1 matrix vector product + vector
operations. So for a sparse matrix with O(1) entries per

row work ~ O(k?*n) = cheap method if only relatively
few Iterations (k) are needed.
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Notes (continued);

4. GMRES gets expensive in storage of vy ... v, and the
orthogonalisation computation if k gets too large, so
sometimes is restarted: do a fixed number [ of GMRES
iterations then reset rq < r; and repeat. This is
GMRES (1) (which is not guaranteed to work!).
Unrestarted GMRES is often called FULL GMRES.

5. 1f A € R®*™ then if GMRES does not stop before n
steps, {v1,...,v,} IS an orthonormal basis for R™
= xp, = x because ||rg||2 Is minimimal for
T € xog + Kn(A, ’I“()) le. for x € R™.

6. Also if continues for n steps AV,, = V,,H,,, |e.
A=V,H, VI VvV, H, e R"™. So A has been
reduced by orthogonal similarity transform to
Hessenberg form.
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Convergence of GMRES

rr = pr(A)re with ||rg|| minimal

= GMRES implicitly finds pg, € IIx , pr(0) = 1 such that
P (A)7o||2 iS minimal.

If A is diagonalisable

A=XAX""'= pp(A) = Xpp(A) X!
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A=XAX"" = pp(A) = Xpp(A) X!
iImplies

Irellz = llpe(A)rollz = | Xpr(A) X ro

< min 1X (|21 X2 [lp(A)l2 lI7oll2
D c Hkap(O) =1
or similar to before

7% |2

1ol < IX|I211X |2 min max  [p(A;)|
Toll2 p € I, p(0) =1 Aj
T

eigenvalues of A
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Comments:

1. || X||2]|X || = (X)) is a number independent of k: if
it is large = (%) Is not very useful convergence
estimate. If it is of moderate size (not known Iin
practice!) then fast convergence if 3p € II, , p(0) = 1
such that p(A;) small for all eigenvalues A; of A.

2. Other GMRES convergence bounds exist, but so far
non is descriptive over a range of problems.

3. the expense of GMRES for k large has led to
development of algorithms for non-symmetric matrices
with fixed work per iteration, but these necessarily must
loose any optimality property in general.
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However: If A = AT then GMRES has fixed work per step:
To see this we have

but A = A' so LHS is symmetric = Hj, is symmetric and
Hessenberg =- tridiagonal

l.e. Arnoldi’s algorithm would calculate lots of zeros in this
case!

In fact the symmetric Lanczos algorithm is used:
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