
Krylov Subspace Methods
A ∈ R

n×n, r ∈ R
n

If A sparse or specially structured, so easy to compute

Ar,A(Ar), . . .

i.e. r, Ar,A2r, . . .

are easy to compute, then Krylov subspaces

Kk(A, r) = span {r, Ar, . . . , Ak−1r}

are convenient nested vector subspaces (exercise: check).

Note y ∈ Kk(A, r)⇔ y = qk−1(A)r0

where qk−1 ∈ Πk−1 (real polynomials of degree ≤ k − 1.)

NLA – p.1/19

If solving Ax = b, (A invertible), guess x0, r0 = b−Ax0,
then look for

xk ∈ x0 +Kk(A, r0) , rk = b−Axk, k = 1, 2, . . .

xk ∈ x0 +Kk(A, r0)

⇔ xk = x0 + qk−1(A)r0

⇔ x− xk = x− x0 − qk−1(A)r0

⇔ A(x− xk)
︸ ︷︷ ︸

b−Axk

= A(x− x0)
︸ ︷︷ ︸

r0

−Aqk−1(A)r0

‖
rk

i.e. rk = pk(A)r0 , pk ∈ Πk , pk(0) = 1

⇔ A−1rk = pk(A)A−1r0 i.e. ek = pk(A)e0, ek = x− xk
NLA – p.2/19

Krylov Subspace Methods
Most common Krylov subspace methods are characterised
by

rk = pk(A)r0 , pk ∈ Πk , pk(0) = 1

AND some optimality condition

e.g. ‖rk‖2 should be minimal over xk ∈ x0 +Kk(A, r0).

Kk(A, r0) = span {r0, Ar0, . . . , A
k−1r0}

NLA – p.3/19

First step is however to compute a good basis for Kk(A, r0)

since Akr0 tends to point in a single direction:

If r0 =
∑

αizi, Azi = λizi and if |λ1| > |λj|, j 6= 1 then

Akr0 =

n∑

i=1

αiA
kzi =

n∑

i=1

αiλ
k
i zi

= λk
1







α1z1 +

n∑

i=2

αi

(
λi

λ1

)k

︸ ︷︷ ︸

→0 as k→∞

zi








Note also ‖Akr0‖ → 0 or∞ depending on whether
|λ1| < 1 or |λ1| > 1

NLA – p.4/19

Arnoldi’s method:

guess x0 , r0 = b−Ax0 , v1 = r0/‖r0‖2

for l = 1, 2, . . .
w = Avl

for j = 1, . . . , l

hjl = vT
j w

w = w − hjlvj
end
hl+1,l = ‖w‖2
vl+1 = w/hl+1,l

end

is a way of generating an orthonormal basis
{v1, v2, . . . , vk} for Kk(A, r0)

NLA – p.5/19

NLA – p.6/19

In matrix form we can write Arnoldi as

AVk = VkHk + hk+1,k





| | |
0 0 · · · vk+1

| | |



 = Vk+1Ĥk

where

Vk =





| | |
v1 v2 · · · vk
| | |



 , has orthogonal columns,

Hk =










h11 h12 · · · · · · h1k

h21 h22 · · · · · · h2k

0 h32
.

...
0 · · · 0 hk,k−1 hkk










∈ R
k×k

is upper Hessenberg
NLA – p.7/19

and Ĥk =












h11 h12 · · · · · · h1k

h21 h22 · · · · · · h2k

0 h32
.

...
0 · · · 0 hk,k−1 hkk

0 · · · 0 0 hk+1,k












∈ R
(k+1)×k

=

[
Hk

0 · · · 0 0 hk+1,k

]

∈ R
(k+1)×k

Note: Vk ∈ R
n×k has orthogonal columns

⇒ V T
k Vk = I ∈ R

k×k so

AVk = VkHk+hk+1,k





| | |
0 0 · · · vk+1

| | |



⇒ V T
k AVk = Hk

(Exercise: check) NLA – p.8/19

Now
xk ∈ x0 +Kk(A, r0)⇔ xk = x0 + Vky

for some y ∈ R
k since {v1 . . . vk} is an orthonormal basis

for Kk(A, r0). Also

xk = x0 + Vky ⇔ x− xk = x− x0 − Vky

A(x− xk) = A(x− x0)−AVky

i.e. rk = r0 −AVky

so ‖rk‖2 is minimal⇔ y ∈ R
k is such that ‖r0−AVky‖2 is

minimal.

NLA – p.9/19

‖rk‖2 is minimal⇔ y ∈ R
k is such that ‖r0 −AVky‖2 is

minimal.

But r0 = ‖r0‖v1 = ‖r0‖Vke1 = ‖r0‖Vk+1e1,
eT1 = [1, 0, . . . , 0]

and by above AVk = Vk+1Ĥk so

‖rk‖2 is min ⇔
∥
∥Vk+1(‖r0‖e1 − Ĥky)

∥
∥
2

is min

but V T
k+1Vk+1 = I ∈ R

(k+1)×(k+1) as {v1, . . . , vk+1}

are orthonormal

so required vector y is that which minimises the linear least
squares problem

∥
∥‖r0‖e1 − Ĥky

∥
∥
2

NLA – p.10/19

Required vector y is that which minimises the linear least
squares problem

∥
∥‖r0‖e1 − Ĥky

∥
∥
2

⇒ need QR factorisation of the rectangular Hessenberg
matrix Ĥk ∈ R

k+1×k

which can be achieved by one additional Givens rotation for
each k since Ĥk is built up by appending the last column
for each k.

(see Exercises)

NLA – p.11/19

This is the basis of the GMRES algorithm
(Generalised Minimal Residual Method)

x0 , r0 = b−Ax0, v1 = r0/‖r0‖

For k = 1, 2, . . .

do step k of the Arnoldi algorithm

(⇒ have v1, v2 . . . vk+1
︸ ︷︷ ︸

new

and Ĥk
︸︷︷︸

last column new

)

solve the Hessenberg linear least squares problem

y = arg min
∥
∥‖r0‖e1 − Ĥky

∥
∥
2

xk = x0 + Vky

end
NLA – p.12/19

As before the Hessenberg least squares problem is solved
by QR factorisation of Ĥk using k + 1 Givens rotations, but
since Ĥk is the same as Ĥk−1 except for one additional
row and column this can be implemented as only 1 Givens
rotation for each k. (see exercises)
Notes:

1. ‖rk‖2 is the linear least squares error in the
Hessenberg least squares problem.

2. xk only needs to be calculated if ‖rk‖ satisfies the
stopping criterion ‖rk‖ ≤ TOL.

3. work at kth GMRES iteration is O(k2) for the least
squares solution + 1 matrix vector product + vector
operations. So for a sparse matrix with O(1) entries per
row work ≃ O(k2n)⇒ cheap method if only relatively
few iterations (k) are needed.

NLA – p.13/19

Notes (continued);

4. GMRES gets expensive in storage of v1 . . . vk and the
orthogonalisation computation if k gets too large, so
sometimes is restarted: do a fixed number l of GMRES
iterations then reset r0 ← rl and repeat. This is
GMRES (l) (which is not guaranteed to work!).
Unrestarted GMRES is often called FULL GMRES.

5. If A ∈ R
n×n then if GMRES does not stop before n

steps, {v1, . . . , vn} is an orthonormal basis for Rn

⇒ xk = x because ‖rk‖2 is minimimal for
xk ∈ x0 +Kn(A, r0) ie. for xk ∈ R

n.

6. Also if continues for n steps AVn = VnHn, ie.
A = VnHnV

T
n , Vn,Hn ∈ R

n×n. So A has been
reduced by orthogonal similarity transform to
Hessenberg form.

NLA – p.14/19

Convergence of GMRES

rk = pk(A)r0 with ‖rk‖ minimal

⇒ GMRES implicitly finds pk ∈ Πk , pk(0) = 1 such that
‖pk(A)r0‖2 is minimal.

If A is diagonalisable

A = XΛX−1 ⇒ pk(A) = Xpk(Λ)X−1

NLA – p.15/19

A = XΛX−1 ⇒ pk(A) = Xpk(Λ)X−1

implies

‖rk‖2 = ‖pk(A)r0‖2 = ‖Xpk(Λ)X−1r0‖

≤ min
p ∈ Πk, p(0) = 1

‖X‖2‖X
−1‖2 ‖p(Λ)‖2 ‖r0‖2

or similar to before

‖rk‖2

‖r0‖2
≤ ‖X‖2‖X

−1‖2 min
p ∈ Πk, p(0) = 1

max
λj

↑
eigenvalues of A

|p(λj)|

—-(⋆) NLA – p.16/19

Comments:

1. ‖X‖2‖X−1‖2 = κ(X) is a number independent of k: if
it is large⇒ (⋆) is not very useful convergence
estimate. If it is of moderate size (not known in
practice!) then fast convergence if ∃p ∈ Πk , p(0) = 1
such that p(λj) small for all eigenvalues λj of A.

2. Other GMRES convergence bounds exist, but so far
non is descriptive over a range of problems.

3. the expense of GMRES for k large has led to
development of algorithms for non-symmetric matrices
with fixed work per iteration, but these necessarily must
loose any optimality property in general.

NLA – p.17/19

However: If A = AT then GMRES has fixed work per step:
To see this we have

V T
k AVk = Hk

but A = AT so LHS is symmetric⇒ Hk is symmetric and
Hessenberg⇒ tridiagonal

i.e. Arnoldi’s algorithm would calculate lots of zeros in this
case!

In fact the symmetric Lanczos algorithm is used:

NLA – p.18/19

NLA – p.19/19

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

