Krylov Subspace Methods

$$A \in \mathbb{R}^{n \times n}, r \in \mathbb{R}^n$$

If A sparse or specially structured, so easy to compute

$$Ar, A(Ar), \dots$$

i.e.

$$r, Ar, A^2r, \dots$$

are easy to compute, then Krylov subspaces

$$\mathcal{K}_k(A,r) = \text{span} \{r, Ar, \dots, A^{k-1}r\}$$

are convenient nested vector subspaces (exercise: check).

Note
$$y \in \mathcal{K}_k(A,r) \Leftrightarrow y = q_{k-1}(A)r_0$$

where $q_{k-1} \in \Pi_{k-1}$ (real polynomials of degree $\leq k-1$.)

If solving Ax = b, (A invertible), guess x_0 , $r_0 = b - Ax_0$, then look for

$$x_k \in x_0 + \mathcal{K}_k(A, r_0)$$
 , $r_k = b - Ax_k$, $k = 1, 2, \dots$
 $x_k \in x_0 + \mathcal{K}_k(A, r_0)$
 $\Leftrightarrow x_k = x_0 + q_{k-1}(A)r_0$
 $\Leftrightarrow x - x_k = x - x_0 - q_{k-1}(A)r_0$
 $\Leftrightarrow \underbrace{A(x - x_k)}_{b - Ax_k} = \underbrace{A(x - x_0)}_{r_0} - Aq_{k-1}(A)r_0$
 $\parallel r_k$

 $\Leftrightarrow A^{-1}r_k=p_k(A)A^{-1}r_0$ i.e. $e_k=p_k(A)e_0, e_k=x-x_k$

i.e. $r_k=p_k(A)r_0$, $p_k\in\Pi_k$, $p_k(0)=1$

Krylov Subspace Methods

Most common Krylov subspace methods are characterised by

$$r_k = p_k(A)r_0$$
 , $p_k \in \Pi_k$, $p_k(0) = 1$

AND some optimality condition

e.g. $||r_k||_2$ should be minimal over $x_k \in x_0 + \mathcal{K}_k(A, r_0)$.

$$\mathcal{K}_k(A,r_0) = \operatorname{span}\left\{r_0,Ar_0,\ldots,A^{k-1}r_0\right\}$$

First step is however to compute a good basis for $\mathcal{K}_k(A, r_0)$ since $A^k r_0$ tends to point in a single direction:

If $r_0 = \sum lpha_i z_i, Az_i = \lambda_i z_i$ and if $|\lambda_1| > |\lambda_j|, j
eq 1$ then

$$egin{array}{lll} A^k r_0 &=& \displaystyle\sum_{i=1}^n lpha_i A^k z_i = \displaystyle\sum_{i=1}^n lpha_i \lambda_i^k z_i \ &=& \displaystyle\lambda_1^k \left[lpha_1 z_1 + \displaystyle\sum_{i=2}^n lpha_i & \left(\displaystylerac{\lambda_i}{\lambda_1}
ight)^k & z_i
ight] \ & o_0 ext{ as } k o \infty \end{array}$$

Note also $\|A^k r_0\| o 0$ or ∞ depending on whether $|\lambda_1| < 1$ or $|\lambda_1| > 1$

Arnoldi's method:

```
guess x_0 \;, r_0 = b - Ax_0 \;, v_1 = r_0/\|r_0\|_2
for l=1,2,\ldots
     w = Av_{l}
           for j=1,\ldots,l
                h_{jl} = v_j^T w
                w = w - h_{il}v_i
           end
           h_{l+1,l} = \|w\|_2
          v_{l+1} = w/h_{l+1,l}
```

end

is a way of generating an orthonormal basis $\{v_1,v_2,\ldots,v_k\}$ for $\mathcal{K}_k(A,r_0)$

In matrix form we can write Arnoldi as

$$AV_k = V_k H_k + h_{k+1,k} \left[egin{array}{cccc} | & | & | & | \ 0 & 0 & \cdots & v_{k+1} \ | & | & | \end{array}
ight] = V_{k+1} \hat{H}_k$$

where

$$V_k = \left|egin{array}{cccc} ert & ert & ert & ert \ v_1 & v_2 & \cdots & v_k \ ert & ert & ert \end{array}
ight| \,, \quad ext{has orthogonal columns,}$$

$$H_k = egin{bmatrix} h_{11} & h_{12} & \cdots & \cdots & h_{1k} \ h_{21} & h_{22} & \cdots & \cdots & h_{2k} \ 0 & h_{32} & \ddots & & dots \ dots & \ddots & \ddots & dots \ 0 & \cdots & 0 & h_{k,k-1} & h_{kk} \end{bmatrix} \in \mathbb{R}^{k imes k}$$

is upper Hessenberg

and
$$\hat{H}_k = egin{bmatrix} h_{11} & h_{12} & \cdots & \cdots & h_{1k} \\ h_{21} & h_{22} & \cdots & \cdots & h_{2k} \\ 0 & h_{32} & \ddots & & dots \\ dots & \ddots & \ddots & \ddots & dots \\ 0 & \cdots & 0 & h_{k,k-1} & h_{kk} \\ 0 & \cdots & 0 & 0 & h_{k+1,k} \end{bmatrix} \in \mathbb{R}^{(k+1) imes k}$$
 $= \begin{bmatrix} H_k & & \\ 0 & \cdots & 0 & 0 & h_{k+1,k} \end{bmatrix} \in \mathbb{R}^{(k+1) imes k}$

Note: $V_k \in \mathbb{R}^{n \times k}$ has orthogonal columns $\Rightarrow V_k^T V_k = I \in \mathbb{R}^{k \times k}$ so

$$AV_k = V_k H_k + h_{k+1,k} \left[egin{array}{cccc} ert & ert & ert \ 0 & 0 & \cdots & v_{k+1} \ ert & ert & ert \end{array}
ight] \Rightarrow V_k^T A V_k = H_k$$

(Exercise: check)

Now

$$x_k \in x_0 + \mathcal{K}_k(A, r_0) \Leftrightarrow x_k = x_0 + V_k y$$

for some $y \in \mathbb{R}^k$ since $\{v_1 \dots v_k\}$ is an orthonormal basis for $\mathcal{K}_k(A,r_0)$. Also

$$x_k = x_0 + V_k y \Leftrightarrow x - x_k = x - x_0 - V_k y$$
 $A(x - x_k) = A(x - x_0) - AV_k y$ i.e. $r_k = r_0 - AV_k y$

so $\|r_k\|_2$ is minimal $\Leftrightarrow y \in \mathbb{R}^k$ is such that $\|r_0 - AV_k y\|_2$ is minimal.

 $\|r_k\|_2$ is minimal $\Leftrightarrow y \in \mathbb{R}^k$ is such that $\|r_0 - AV_ky\|_2$ is minimal.

But
$$r_0 = \|r_0\|v_1 = \|r_0\|V_ke_1 = \|r_0\|V_{k+1}e_1,$$
 $e_1^T = [1,0,\ldots,0]$

and by above $AV_k = V_{k+1}\hat{H}_k$ so

$$\lVert r_k
Vert_2$$
 is min $\Leftrightarrow \left\lVert V_{k+1}(\lVert r_0
Vert e_1 - \hat{H}_k y)
Vert_2$ is min

but
$$V_{k+1}^T V_{k+1} = I \in \mathbb{R}^{(k+1) imes (k+1)}$$
 as $\{v_1, \dots, v_{k+1}\}$

are orthonormal

so required vector y is that which minimises the linear least squares problem

$$\left\| \left\| r_0 \right\| e_1 - \hat{H}_k y \right\|_2$$

Required vector y is that which minimises the linear least squares problem

$$\left\| \left\| r_0 \right\| e_1 - \hat{H}_k y \right\|_2$$

 \Rightarrow need QR factorisation of the rectangular Hessenberg matrix $\hat{H}_k \in \mathbb{R}^{k+1 \times k}$ which can be achieved by one additional Givens rotation for each k since \hat{H}_k is built up by appending the last column for each k.

(see Exercises)

This is the basis of the GMRES algorithm (Generalised Minimal Residual Method)

$$x_0\ ,\ r_0=b-Ax_0,\, v_1=r_0/\|r_0\|$$
 For $k=1,2,\ldots$ do step k of the Arnoldi algorithm

(
$$\Rightarrow$$
 have $v_1, v_2 \ldots \underbrace{v_{k+1}}$ and $\underbrace{\hat{H}_k}$) new last column new

solve the Hessenberg linear least squares problem

$$y = ext{ arg min } ig\| ig\| r_0 ig\| e_1 - \hat{H}_k y ig\|_2$$
 $x_k = x_0 + V_k y$

end

As before the Hessenberg least squares problem is solved by QR factorisation of \hat{H}_k using k+1 Givens rotations, but since \hat{H}_k is the same as \hat{H}_{k-1} except for one additional row and column this can be implemented as only 1 Givens rotation for each k. (see exercises) Notes:

- 1. $||r_k||_2$ is the linear least squares error in the Hessenberg least squares problem.
- 2. x_k only needs to be calculated if $||r_k||$ satisfies the stopping criterion $||r_k|| \leq \mathsf{TOL}$.
- 3. work at k^{th} GMRES iteration is $O(k^2)$ for the least squares solution + 1 matrix vector product + vector operations. So for a sparse matrix with O(1) entries per row work $\simeq O(k^2n) \Rightarrow$ cheap method if only relatively few iterations (k) are needed.

Notes (continued);

- 4. GMRES gets expensive in storage of $v_1 ldots v_k$ and the orthogonalisation computation if k gets too large, so sometimes is restarted: do a fixed number l of GMRES iterations then reset $r_0 \leftarrow r_l$ and repeat. This is GMRES (l) (which is not guaranteed to work!). Unrestarted GMRES is often called FULL GMRES.
- 5. If $A \in \mathbb{R}^{n \times n}$ then if GMRES does not stop before n steps, $\{v_1, \ldots, v_n\}$ is an orthonormal basis for \mathbb{R}^n $\Rightarrow x_k = x$ because $||r_k||_2$ is minimimal for $x_k \in x_0 + \mathcal{K}_n(A, r_0)$ ie. for $x_k \in \mathbb{R}^n$.
- 6. Also if continues for n steps $AV_n = V_nH_n$, ie. $A = V_nH_nV_n^T$, $V_n, H_n \in \mathbb{R}^{n \times n}$. So A has been reduced by orthogonal similarity transform to Hessenberg form.

Convergence of GMRES

$$r_k = p_k(A)r_0$$
 with $\|r_k\|$ minimal

 \Rightarrow GMRES implicitly finds $p_k \in \Pi_k \;,\; p_k(0) = 1$ such that $\|p_k(A)r_0\|_2$ is minimal.

If A is diagonalisable

$$A = X\Lambda X^{-1} \Rightarrow p_k(A) = Xp_k(\Lambda)X^{-1}$$

$$A = X\Lambda X^{-1} \Rightarrow p_k(A) = Xp_k(\Lambda)X^{-1}$$

implies

$$egin{array}{lll} \|r_k\|_2 &=& \|p_k(A)r_0\|_2 = \|Xp_k(\Lambda)X^{-1}r_0\| \ &\leq & \min & \|X\|_2\|X^{-1}\|_2 \ \|p(\Lambda)\|_2 \ \|r_0\|_2 \ &p \in \Pi_k, p(0) = 1 \end{array}$$

or similar to before

$$rac{\|r_k\|_2}{\|r_0\|_2} \leq \|X\|_2 \|X^{-1}\|_2 \quad \min_{p \in \Pi_k,\, p(0) = 1} \quad \max_{\lambda_j} \quad |p(\lambda_j)| \quad \uparrow$$
 eigenvalues of A

—-(*)

Comments:

- 1. $||X||_2||X^{-1}||_2 = \kappa(X)$ is a number independent of k: if it is large \Rightarrow (*) is not very useful convergence estimate. If it is of moderate size (not known in practice!) then fast convergence if $\exists p \in \Pi_k$, p(0) = 1 such that $p(\lambda_i)$ small for all eigenvalues λ_i of A.
- 2. Other GMRES convergence bounds exist, but so far non is descriptive over a range of problems.
- 3. the expense of GMRES for *k* large has led to development of algorithms for non-symmetric matrices with fixed work per iteration, but these necessarily must loose any optimality property in general.

However: If $A = A^T$ then GMRES has fixed work per step: To see this we have

$$V_k^T A V_k = H_k$$

but $A = A^T$ so LHS is symmetric $\Rightarrow H_k$ is symmetric and Hessenberg \Rightarrow tridiagonal

i.e. Arnoldi's algorithm would calculate lots of zeros in this case!

In fact the symmetric <u>Lanczos</u> algorithm is used: