If $A=A^T$ is positive definite, there is an even more efficient Krylov subspace method than MINRES, namely the method of *Conjugate Gradients* (for Ax=b) which computes $x_k \in x_0 + \mathcal{K}_k(A,r_0)$ such that $||x-x_k||_A$ is minimal where $y^TAy=\|y\|_A^2$.

Note $\|\cdot\|_A$ defines a norm when A is symmetric and positive definite, indeed $< z, y>_A = < Az, y> = y^TAz$ defines a scalar product (inner product) for which $< y, y>_A = \|y\|_A^2$ in this case.

Lemma Conjugate Gradient Algorithm choose x_0 , $r_0 = b - Ax_0 = p_0$ and for $k = 0, 1, 2, \ldots$

$$egin{array}{lll} lpha_k &=& p_k^T r_k / p_k^T A p_k \ x_{k+1} &=& x_k + lpha_k p_k \ r_{k+1} &=& b - A x_{k+1} \ eta_k &=& - p_k^T A r_{k+1} / p_k^T A p_k \ p_{k+1} &=& r_{k+1} + eta_k p_k \end{array}$$

computes iterates $\{x_k\}$, corresponding residuals $\{r_k\}$ and search directions $\{p_k\}$ so that as long as $x_k \neq x$ we have

$$egin{array}{lcl} r_k^T p_j &=& r_k^T r_j = 0 \;\;,\; j < k & (1) \ p_k^T A p_j &=& 0 \;\;,\; j < k \;\;,\; (p_k^T A p_k
eq 0) \;\; (2) \ & ext{span}\{r_0,r_1,\ldots,r_{k-1}\} &=& ext{span}\{p_0,p_1,\ldots,p_{k-1}\} \ &=& \mathcal{K}_k(A,r_0) \;\;\; (3) \end{array}$$

It is now an easy induction using $x_k=x_{k-1}+\alpha_{k-1}p_{k-1}$ to show that $x_k\in x_0+\mathcal{K}_k(A,r_0)$ (exercise) and also

Theorem

$$||x - x_k||_A \le ||x - y||_A$$
 , $y \in x_0 + \mathcal{K}_k(A, r_0)$

Proof

let $c=x-x_0$ and $c_k=x_k-x_0\in\mathcal{K}_k(A,r_0)$ then $Ac=r_0$ and $x-x_k=c-c_k$ hence $r_k=A(x-x_k)=A(c-c_k).$

Now by the above r_k is orthogonal to every vector in $\mathcal{K}_k(A,r_0)$ i.e. $orall\,v\in\mathcal{K}_k(A,r_0)$

$$0 = \langle r_k, v \rangle = \langle A(c - c_k), v \rangle = \langle c - c_k, v \rangle_A$$

and such (Galerkin) orthogonality $\Rightarrow \|c-y\|_A$ is minimised for $y \in \mathcal{K}_k(A,r_0)$ when $y=c_k$

 $\Rightarrow \|x-z\|_A$ is minimised for $z\in x_0+\mathcal{K}_k(A,r_0)$ by $z=x_k$ since $c=x-x_0$ and $x_k=x_0+c_k$.

Convergence of Conjugate Gradients

we have $r_k = p_k(A)r_0$ or equivalently

$$(x-x_k)=p_k(A)(x-x_0),\, p_k\in\Pi_k, p_k(0)=1$$
 and $\|x-x_k\|_A=\|r_k\|_{A^{-1}}$ minimal over $x_k\in x_0+\mathcal{K}_k(A,r_0)$ for each k .

Let
$$Av_j=\lambda_j v_j, \quad j=1,\ldots,n, \quad v_j^T v_i=\delta_{ij}$$
 and $x-x_0=\sum_{j=1}^n lpha_j v_j$ then

$$x-x_k = \sum_{j=1}^n lpha_j p_k(A) v_j = \sum_{j=1}^n lpha_j p_k(\lambda_j) v_j$$

so
$$\langle x-x_k,x-x_k
angle_A=\sum_{j=1}^n lpha_j^2 p_k(\lambda_j)^2 \langle v_j,v_j
angle_A$$

since
$$v_j^T v_i = \delta_{ij} \Rightarrow v_j^T A v_i = \lambda_i \delta_{ij} = 0$$
 if $i
eq j$

hence
$$\|x-x_k\|_A \leq \min_{p\in\Pi_k, p(0)=1} \max_j |p(\lambda_j)| \ \|x-x_0\|_A$$