Mathematical physiology

PROBLEM SHEET 0

1. The Lotka—Volterra system is given by
r=xz(1-1y),

y=py(r—1).
Write the equations in terms of X = x — 1 and Y = y — 1, and show that there
is a first integral of the equation of the form
pw(X) +w(Yy) = E, (%)
where E is constant. If the minimum value of £ = 0, give the definition of
w(X), and draw its graph.

We now wish to show that the trajectories satisfying (%) form closed loops in
the (X,Y) plane. To show this, define a function r(§) by

£ =++/w(r) if r>0,

E=—yvw(r) if r<o,

and show that r(£) is a smooth, monotonically increasing function, give its
behaviour as £ — 400, and draw its graph.

Now consider the transformation from (X,Y") to (£, n) space given by X = r(§),
Y = r(n). Show that the trajectories in (X, Y’) space are mapped to the curves

pé+n° =E,

and deduce that these form closed loops in (£, 7) space and hence also (X,Y)
space.

Sketch the trajectories in the positive quadrant of the phase plane.

2. For the system

b= 1 [Fla) — ],
j = BlG() — y),
where 5
Fa) = (k= 2)(1+2). Gla)=

where k > 1, b > k? and 8 > 0, show that there is at least one fixed point
(20, Yo) in the first quadrant. Assuming that F”(x¢) > 0, that this fixed point is



unique, and that it is oscillatorily unstable, draw the nullclines of the system,
and draw the trajectories in the phase plane.

Construct a bounding box for the trajectories, and show using the Poincaré-
Bendixson theorem that the system has at least one stable limit cycle.

[Hint: you can assume there is a small circle C' surrounding the fized point on
which all trajectories are directed outwards; the bounding box then consists of
an inner curve C, and an outer curve which consists of straight (horizontal or
vertical) lines, together with a curve A in the part of the quadrant where & < 0,
y < 0. Show that in this region, when x is small,

dy By Bk

de " aly—k) " aly— k)

and use this information to construct a suitable curve A to complete the con-
struction of B.]

. For a cubic nonlinearity, the travelling wave solutions of the nonlinear diffusion
equation
w = f(u) + g

satisfy the phase plane equations

d dV
where U’ = d—g, V= d_f’ and

(U, V) — (1,0) as & — —o0,
(U, V) —(0,0) as & — oo,

where we take
fU)=2UU —1)(a - U),
with 0 < a < 1.

Carry out a phase plane analysis in the case a < %, assuming that ¢ > 0 and

that a connecting trajectory exists, and draw the phase plane trajectories.

[Harder.] In order to prove that there is a unique connecting trajectory, we can
use a monotonicity argument.

Show that the separatrix arriving at (0,0) is determined by

Z—g:c—@, VaXU as U—0, (%

where

N = S+ {2 —4f/(0)}?)
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Show that )y is a monotonically increasing function of ¢. Deduce that if two
solutions of (%) are denoted V; and V3, corresponding to two values ¢; < ¢,
then for small U, Vi < V5.

Show that if V; = V5 at some U > 0, then necessarily V; > VJ at that point.
Using (), show that this contradicts the assumption that ¢; < ¢o. Hence deduce
that V' (U;c) is a monotonically increasing function of ¢ > 0.

Show that for large ¢, V' = cU, so that in particular V' (1,¢) > 0 and the arriving
separatrix at the origin is above the leaving separatrix at (1,0) for large c.

Show that for small ¢,
U
2 +/ f(U)dU = 0,
0

and deduce that the separatrix arriving at (0,0) passes through (Up,0) where
Uo

Up is the minimum positive value such that / f(U)dU = 0. Deduce that if

0
Uy < 1, the arriving separatrix is below the leaving separatrix for small c.

Show that o
U=2%a+1)—2[(3—a)2—a)] ",

and deduce that Uy exists and is < 1 iff a < % Hence show that there is a

unique connecting trajectory between (1,0) and (0,0) with ¢ > 0 if a < %, but

no such trajectory exists for any ¢ > 0 if a > %

. Derive a suitably scaled form of the Michaelis-Menten model for the reaction

Bk
S—I—EI:C%E—FP,

and show that it depends on the parameters

k_y + ko \ = ko o= @

k150 77 kiSe Sy’
where Sy and Fy are the initial values of S and E. If ¢ < 1, show that the
solution consists of an outer layer in which ¢t = O(1), and an inner layer in

which ¢ = O(g), and find explicit approximations for these. Hence show that S
decreases linearly initially, but exponentially at large times.

K =

. An enzyme has n binding sites for a substrate S. If the enzyme complexes
with j bound sites are denoted as Cj, write down the rate equations for the
concentrations of S, P and Cj, j = 0,1,...,n, where Cy = E, satisfying the
reactions
ki kt
S+Cz_1iC’Z—Z>CQ_1+P
Deduce that

CO:EO_iCia
1
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where Fj is the initial enzyme present. Use the quasi-steady state assumption
to show that R; =0,7=1,...,n, where

R, =k;SC;_y — (k_; + k)5,
and deduce that the reaction rate r = dP/dt is given approximately by

- EO Z?:l k;l'qsrsr
1+ Z?:l ijsj 7

where

J
1 ki + k&
o=z K==
i=1" " !

Deduce that if ky — 0 with kyk, finite, the reaction rate is approximated by

the Hill equation
k. EyS™

- H?:1 K + s

r

. Suppose a population has a size distribution ¢(a,t), where a is age and t is
time: ¢ da is the number of individuals with ages between a and a + da. The
birth rate b(a) depends on age, as does the mortality rate m(a). Show that

¢t + (,ba = _m¢7
and explain why the birth rate appears in the boundary condition
60,6 = [ ba)olat)da
0

What is assumed about ¢ as a — oo?

Show that the steady size distribution with age of a population is given by the
solution of the linear integral equation

ola) = / " Ga,000(¢) de,

where G(a, ) should be specified.

Use the method of characteristics to show that for ¢ > a, the solution for ¢ is
o= [ weotet - aydcexp |~ [“miman|.
0 0

Deduce an approximate equation for ¢ if b(§) = 0 for £ < t,,, b = B (constant)
for t,, <& <t,+t, b=0for & > t,, +t,, where t;, is small, and hence show
that if z(t) = ¢(tm, t), then

x(t) = Ax(t — t),

where A = Bty exp [— fgm m(n) dn} . Why is this obvious?



