Problem sheet 3

1. St Venant equations

(i) Derive the St Venant equations from first principles in the form

$$\frac{\partial A}{\partial t} + \frac{\partial}{\partial x}(Au) = 0,$$
$$\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} = gS - \frac{\tau\ell}{\rho A} - g\frac{\partial \overline{h}}{\partial x}$$

Manning's law corresponds to taking $\tau = \rho g n^2 u^2 / R^{1/3}$, where $R = A/\ell$ is the hydraulic radius. Assuming a triangular cross-section with transverse bed angle β , find appropriate expressions for τ and \overline{h} in terms of u and A.

(ii) Non-dimensionalise the resulting equations using a length scale L and discharge scale Q to obtain

$$\frac{\partial A}{\partial t} + \frac{\partial}{\partial x}(Au) = 0,$$
$$\varepsilon F^2 \left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x}\right) = 1 - \frac{u^2}{A^{2/3}} - \varepsilon \frac{\partial}{\partial x}(A^{1/2}),$$

and define the parameters ε and F.

(iii) Assuming that $\varepsilon \ll 1$ and $F \ll 1$, show that A satisfies the approximate equation

$$\frac{\partial A}{\partial t} + \frac{4}{3}A^{1/3}\frac{\partial A}{\partial x} = \frac{1}{4}\varepsilon\frac{\partial}{\partial x}\left(A^{5/6}\frac{\partial A}{\partial x}\right).$$

(iv) A sluice gate on the river is suddenly opened so that the cross-sectional area there increases from A_{-} to A_{+} . The hydrograph is measured a distance L downstream. Sketch the hydrograph for the cases (i) $\varepsilon = 0$ and (ii) $0 < \varepsilon \ll 1$ (no detailed calculation is required).

2. Surface waves

(i) Show that with a suitable choice of non-dimensionalisation, the St Venant equations for a triangular-shaped cross section with Manning's roughness law, can be written in the form

$$\frac{\partial A}{\partial t} + \frac{\partial}{\partial x}(Au) = 0,$$
$$F^2\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x}\right) = 1 - \frac{u^2}{A^{2/3}} - \frac{1}{2A^{1/2}}\frac{\partial A}{\partial x},$$

giving the definition of F. Write down the uniform steady state with dimensionless discharge 1.

(ii) Show that small perturbations to the steady state can propagate up and downstream if $F < F_1$, but can only propagate downstream if $F > F_1$; and that they are unstable if $F > F_2$. Give the values of F_1 and F_2 .

3. Anti-dunes A simple model of bed erosion based on the St Venant equations can be written in dimensionless form as

$$\varepsilon h_t + (hu)_x = 0,$$

$$F^2(\varepsilon u_t + uu_x) = -\eta_x + \delta \left(1 - \frac{u^2}{h}\right),$$

$$h(\varepsilon c_t + uc_x) = E(u) - c = -s_t,$$

where $h = \eta - s$, and E(1) = 1.

- (i) Briefly explain the meaning of the terms in this model, and the physical significance of the dimensionless parameters ε , δ and F.
- (ii) By considering the stability of the steady state u = h = c = 1, and assuming that $\varepsilon \ll 1$ while δ and F are $\mathcal{O}(1)$, show that instability can occur depending on the sign of E'(1) and the size of F.
- (iii) Find the phase difference between surface and bed profiles in the limit of small and large wavenumbers $(k \to 0 \text{ and } k \to \infty)$.

4. Eddy-viscosity model

(i) Derive the Exner equation relating bed elevation s and bedload transport q.

Supposing the bedload is a function of the shear stress $q = q(\tau)$, show that the equation can be written in dimensionless form as,

$$\frac{\partial s}{\partial t} + q'(\tau)\frac{\partial \tau}{\partial x} = 0.$$

 (ii) An eddy-viscosity model for turbulent flow over linearised topography leads to the following approximate expression for the dimensionless shear stress,

$$\tau = \left[1 - s + \int_0^\infty K(\xi) \frac{\partial s}{\partial x} (x - \xi, t) \, \mathrm{d}\xi\right],\,$$

where the kernel is $K(x) = \mu/x^{1/3}$, and $\mu > 0$ is constant.

Making use of this expression, examine whether linear perturbations to the steady state s = 0 are unstable. Which direction do the perturbations travel?

[Hint: in your calculation you will need to evaluate the integral $\int_0^\infty \xi^{-1/3} e^{-ik\xi} d\xi$, for which you can use contour integration to find the value $e^{-i\pi/3}\Gamma(\frac{2}{3})k^{-2/3}$, where $\Gamma(\nu) = \int_0^\infty t^{\nu-1}e^{-t} dt$ is the gamma function.]