Topics in fluid mechanics

PROBLEM SHEET 4.

1. Derive a reference state for a dry atmosphere (no condensation) by using the
equation of state
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and the dry adiabatic temperature equation
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Use the typical values ¢,T/g =~ 29 km, M,c,/R ~ 3.4, to show that the pressure
can be adequately represented by

P =poexp(—z/H),
where here the scale height is defined as

 RT,

H
M,g

~ 8.4 km.

(A slightly better numerical approximation near the tropopause is obtained if
the scale height is chosen as 7 km.)

2. The mass and momentum equations for atmospheric motion in the rotating
frame of the Earth can be written in the form

d .
P [(;—1—29 X u] = —Vp — pgk,

where (x,y, z) are local Cartesian coordinates at latitude A = \o. What is the
magnitude of €27

Scale the variables by writing

[
x,y~lIl, z~h, uv~U w~oU, tNE,



p~po, T~Ty p=pop(z)+2pQUlsin\ P,

where
5= h o — poRTy
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and show that the horizontal components take the form
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and give the definition of the Rossby number . Show that in a linear approxi-
mation,

[ =1+ ¢epy,

where ; 63
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and Rg is Earth’s radius.
The dimensionless pressure II = p/py, density p, temperature 7" and potential

temperature 0 in the atmosphere satisfy the relations
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where o = is constant. Assuming that

aCp
I=p+e*P, 0=0+c0,
and that ¢ < 1, deduce that p ~ p(z), and thence that
w=0(), pur—-FP, p=DP,.

Show also that consistency between the two forms of scaled pressure requires
the definition of the velocity scale to be

- 8(Q sin )\0)3’
gh
and determine this value, if [ = 1,000 km, \g = 45°, ¢ = 9.8 m s72, h = 8 km.
Show that 5
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and by defining a stream function via P = p) and assuming that 6 ~ 1, deduce
that © ~ 1, and hence deduce the thermal wind equations:
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3. The quasi-geostrophic potential vorticity equation is

o 12 (2] o - 12 (),

dt p0z\S 0z poz\ S
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where V2 = 8(12 + Gayz’ and p, S and H are functions of z, the first two being

positive. The horizontal material derivative is

d 0 0 0
ﬁ_a%—uaﬁx—{—vﬁiy’ U——wy, U—wx.

In the Eady model of baroclinic instability, solutions to the QGPVE are sought
in a channel 0 <y < 1, 0 < z < 1, with boundary conditions

d

awzzo at z=0,1, Y, =0 at y=0,1,

and it is supposed that p and S are constant, and § = H = 0. Show that a
particular solution is the zonal flow ¢y = —yz, and describe its velocity field.
By considering the thermal wind equations, explain why this is a meaningful
solution.

By writing ¥ = —yz + ¥ and linearising the equations, derive an equation for
¥, and show that it has solutions
T = A(2)e™ @ sin nrry,
providing
(2 =) (A" = p*A) =0,
(z—c)A'=A on 2=0,1,
where you should define p.

Using the fact that zd(x) = 0, show that if 0 < ¢ < 1, the solution can be found
as a Green’s function for the equation A” — pu?A = 0.

Give a criterion for instability, and show that for the normal mode solutions in
which A is analytic,

1 1/2
c::l:l{(u—cothu> ('u—tanh'u)} ,
2 pL\2 2/)\2 2

and hence show that the zonal flow is unstable if © < p., where

K coth H,
2 2
and calculate this value. Deduce that the flow is unstable for S < S., and

calculate S..



4. A basic two fluid model of two-phase flow is given by the equations
(apg)t + (ngv)z =T,

{o(1 = a)}e +{p(1 — @)u}, = T,
pg[vt + UUZ] = =Pz — M;
pilu + Dywu,] = —p, + M,

where « is void fraction, u and v are liquid and gas phase velocities, p is pressure,
and p, and p; are gas and liquid densities; the constant D; > 1 is a profile coeffi-
cient, and I' and M are interfacial source and drag terms, which are prescribed
algebraic functions of the variables.

Explain how to find the characteristics of this system when written in the form
A, + By, = c.

(i) Assuming p, and p; are constant and p, < p;, show that the characteristics
are generally real.

(ii) If
dpg 1 dpp 1
- ) dp - Clg)
calculate approximate values of the characteristics if u ~ v < ¢ ~ ¢, and
pg <K pi, and comment on the physical significance of these.

5. The energy equation for a one-dimensional two-phase flow in a tube is given by
LL + apyepg(Ty +0T%) + (1 — ) picp(Th + uT%) — {(apg)e + (apgv):}
{0 =a)p}e +{(1 - a)pu}.] = @,

where
I'= (apy)i + (apgv), = —=[{(1 — a)pi} + {(1 — a)pru}.],
and the temperatures of the two phases are assumed equal, and denoted by T'.

The enthalpy of each phase satisfies dhy, = ¢, d1', and is related to the internal

energy e by

hk:6k+@;
Pk

L = hy — Iy is the latent heat. Deduce that the energy equation can be written
in the form

(apgeq) + (apgeqv). + [(1 — a)pers + [(1 — @) preul. = Q.
Define the mixture density by
p=p(l—a)+p,
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the mixture pressure by
p=(1-a)p +ap,

the mixture internal energy by
pe = apgeq + (1 — a)pie,

and the mixture enthalpy by
h=e+=;
p
deduce that

ph = apghg + (1 — a)pihy.
If the flow is homogeneous, deduce that

de

I
pdt )

d
where — is the material derivative, and if the pressure drop along the tube
Ap < pyL, show that h =~ e, and deduce that

% _ (pl - pg)Q'
0z pgp1L

. An approximate homogeneous two-phase model for density wave oscillations in
a pipe of length [ is given by

pr+up, = —u.p,

_Afpu?
d )

p(us + uu,) = —p, — pg

p(hy + uh,) = Q,

where () is constant, and
poL

p
in the two-phase region; h*, L and @) are constants, p, and p; are (constant) gas
and liquid densities, h is enthalpy, and p, p and w are mixture density, pressure
and velocity. For h < hg,, the saturation enthalpy, only liquid is present, p = py,
and the above relation for h is irrelevant.

h~h"+

Boundary conditions for the flow are that
h=hy<hg,, u=U({t) at z=0,

h=hg on z=r(t),

where the unknown boiling boundary r(¢) is to be determined, and the pressure
drop along the pipe, Ap, is prescribed.
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Show that

0= " Us)ds,

and give the definition of 7.

Non-dimensionalise the two-phase model by scaling
pr~p, zr~l t~T1  u U~ ug,

and show that the two-phase velocity and density satisfy

uw=U+2"1

—Iln t
, z:r—i—e/ ULt — e€)et de, r:/ U(s) ds,
0 t—1

where Uy (t) = U(t — 1), and give the definition of .

Show that the pressure drop in the single phase region is
Apsy, = [ApiU + Ap, + ApsU?)r,

where
4 flpyug

Ap; = pud,  Apy = pgl, Apy = g o=

Write down an integral expression for the two-phase pressure drop in the form
1
Apyy, = / (Ap;®; + Apy®, + Aps®y] dz,

where the functions ®, depend on u and p and their derivatives.

If U = V in the steady state, explain why 0 < V' < 1. Write down an expression
for Ap as a function of V. Show that if V' is sufficiently close to one, Ap is an
increasing function of V', but that if ¢ is sufficiently small, it is a decreasing
function of V.

Now suppose that Ap; = Ap, = 0. To examine the stability of the steady state
(denoted by a suffix zero for r, u and p), write

U=V +ov, r=ro+r, u=u+u, p=po+p,

and linearise the equations. Hence derive expressions for r1, u; and p;.

By taking v = ¢!, derive an algebraic equation for o from the condition that
the perturbation to Ap is zero. If only the single phase pressure drop term is
included, show that

0= _%(]‘ - 670’)7

and deduce that the steady state is stable.

If only the two-phase pressure drop is included, and ¢ is assumed to be small,
show that
2V

0-:’}/(60._1)7 7:1_‘/7



and deduce that Reoc — co as 0 — oo € C, and thus that the model is ill-posed.

If both pressure drops are included (and the two-phase approximation for small
¢ is used), show that

Y(1 —e™?) _ 4eV/?

d+e ’ (1-V)2’

and deduce that the model is ill-posed for § < 1.

Finally, if the inertial term in the single phase region (only) is included, show

that
2€Apl

(1 - V)QA]) f’
and deduce that the model is well-posed, but the steady state is unstable for
small e.

vol +o(df+e %) —y(1—-e?)=0, v=



