Boundary Layer at infinity, logs

$$
\begin{array}{ll}
\left(x^{2} y^{\prime}\right)^{\prime}+\varepsilon x^{2} y y^{\prime}=0 & x>1, y(1)=0, y(\infty)=1 \\
& 0<\varepsilon \ll 1
\end{array}
$$

$0\left(\varepsilon^{0}\right) \quad\left(x^{2} y_{0}^{\prime}\right)^{\prime}=0 \quad \therefore y_{0}=1-1 / x \quad$ using bandary conditions.
$0\left(\varepsilon^{\prime}\right) \quad\left(x^{2} y_{2}^{\prime}\right)^{\prime}=-x^{2} y_{0} y_{0}^{\prime}=-1+1 / x$

$$
\therefore \text { using } y_{2}(1)=0, y_{2}=A(1-1 / x)-\ln x-\frac{\ln x}{x}
$$

cannot satisfy $y_{2}(\infty)=0$ (Bath $-1+1 / x$ are hanogeneas solutions to $\left(x^{2} f^{\prime}\right)^{\prime}=0$, hence a resonant forcing occurs)

Try $x=X / \delta_{1}(\varepsilon) \quad y=1+\delta_{2}(\varepsilon) Y(X)$ with $\delta_{1}, \delta_{2} \rightarrow 0, X=\operatorname{crd}(1)$ as $x \rightarrow \infty$

Dominant balance $\delta_{2} \frac{d}{d x}\left(x^{2} \frac{d y}{d x}\right)+\frac{\varepsilon \delta_{2}}{\delta_{1}} x^{2} \frac{d y}{d x}+\frac{\varepsilon \delta_{2}^{2}}{\delta_{1}} x^{2} y \frac{d y}{d x}=0$
Let $Y(x)=y_{0}(x)+0(1)$

$$
\frac{d}{d x}\left(x^{2} \frac{d y_{0}}{d x}\right)+x^{2} \frac{d y_{0}}{d x}=0
$$

exercise

$$
y_{0}(x)=B \int_{x}^{\infty} \frac{e^{-s}}{s^{2}} d s \quad \text { noting } y_{0}(x)=0
$$

Splitingrange of integral,
Intermediate variables $\quad \hat{x}=\varepsilon^{\alpha} x=\varepsilon^{\alpha-1} X$

$$
y=1+\delta_{2} y \sim 1+\delta_{2} B\left[\frac{\varepsilon^{\alpha-1}}{\hat{x}}+\ln \left(\varepsilon^{1-\alpha} \hat{x}\right)+\cdots\right] \quad \text { for "inner" }
$$

$y \sim 1-\frac{\varepsilon^{\alpha}}{\hat{x}}$ for outer $\quad \therefore \quad$ Let $\delta_{2}=\varepsilon, B=-1$

$$
\begin{aligned}
\therefore 1+\delta_{2} y & \sim 1-\frac{\varepsilon^{\alpha}}{\hat{x}}-\varepsilon \ln \left(\varepsilon^{1-\alpha} \hat{x}\right)+\cdots \\
& \sim 1-\frac{\varepsilon^{\alpha}}{\hat{x}}+\underbrace{(1-\alpha) \varepsilon \ln 1 / \varepsilon}_{\begin{array}{c}
\text { next term } \\
\text { scales with } \varepsilon \ln 1 / \varepsilon
\end{array}}-\underbrace{\varepsilon \ln \hat{x}}
\end{aligned}
$$

\therefore We should have written $y \sim y_{0}(x)+\varepsilon \ln 1 / \varepsilon y_{1}(x)+\varepsilon y_{2}(x)+\cdots$ for the outer ...
Now we can match....

$$
\begin{aligned}
& \left(x^{2} y_{1}^{\prime}\right)^{\prime}=0 \quad y_{1}(x)=C(1-1 / x) \quad \text { using } \quad y_{1}(1)=0 . \\
& \therefore \quad y \sim 1-\frac{\varepsilon^{\alpha}}{\hat{x}}+\varepsilon \ln \frac{1}{\varepsilon} c\left(1-\varepsilon^{\alpha} \mid \hat{x}\right) \\
& \\
& +\varepsilon\left[A\left(1-\varepsilon^{\alpha} \mid \hat{x}\right)-\ln \left(\varepsilon^{-\alpha} \hat{x}\right)\right. \\
& \\
& \left.-\varepsilon^{\alpha} / \hat{x} \ln \left(\varepsilon^{-\alpha} \hat{x}\right)\right]+\cdots \begin{array}{c}
\text { in intermediate } \\
\text { region } \\
\text { for the outer ... }
\end{array} \\
& \sim 1-\frac{\varepsilon^{\alpha}}{\hat{x}}+\left(\varepsilon \ln \frac{1}{\varepsilon}\right)[C-\alpha]+\cdots \\
& \therefore \quad 1-\alpha=C-\alpha \text { and } C=1 \leftarrow \\
& \therefore \quad y \sim(1-1 / x)+\varepsilon \ln 1 / \varepsilon(1-1 / x)+0(\varepsilon)
\end{aligned}
$$

5.2 .9

Expansion sequence $1, \varepsilon \ln 1 \varepsilon, \varepsilon, \varepsilon^{2} \ln 1 / \varepsilon, \varepsilon^{2}(\ln 1 / \varepsilon)^{2}, \varepsilon^{2}, \ldots$
Van Dyke rule works only if $(\ln 1 / \varepsilon)$ treated as $O(1)$.

6 Multiple Scales
Van der Pd oscillator

$$
\ddot{x}+\varepsilon\left(x^{2}-1\right) \dot{x}+x=0
$$

with $x=1, \dot{x}=0$ at $t=0$
Let $x \sim x_{0}(t)+\varepsilon x_{1}(t)+\cdots$
With regular perturbation expansion

$$
\begin{aligned}
& x_{0}(t)=\cos t \\
& \ddot{x}_{1}+x_{1}=\left(1-x_{0}^{2}\right) \dot{x}_{0} \quad \text { with } \quad x_{1}(0)=\dot{x}_{1}(0)=0 . \\
\therefore \quad \ddot{x}_{1}+x_{1}= & \left(1-\cos ^{2} t\right)(-\sin t)=1 / 4 \sin 3 t-\underbrace{3 / 4} \sin t
\end{aligned}
$$

will generate resonant terms

$$
\begin{aligned}
& x_{1}=3 / 8(t \cos t-\sin t)-1 / 32(\sin 3 t-3 \sin t) \\
\therefore & x \sim \cos t+\varepsilon[3 / 8 t \cos t+\cdots]+0\left(\varepsilon^{2}\right)
\end{aligned}
$$

Perturbation expansion breaks down

Long timescales allow corrections to accumulate.

Two timescales
$\tau=t$ - fast timescale of oscillation
$T=\varepsilon t$ - slow timescale of amplitude drift

- Look for a solution of the form

$$
x(t, \varepsilon)=x(\tau, T, \varepsilon)
$$

treating τ, T as independent.

$$
\left.\begin{array}{l}
\text { treating } \tau, T \text { as independent. } \\
\therefore \frac{d}{d t}=\frac{d \tau}{d t} \frac{\partial}{\partial \tau}+\frac{\partial T}{\partial t} \frac{d}{d T}=\frac{\partial}{\partial \tau}+\varepsilon \frac{\partial}{\partial T} \\
\therefore \quad \ddot{x}=x_{t t}=\left(\partial_{\tau}+\varepsilon \partial_{T}\right)\left(\partial_{\tau}+\varepsilon \partial_{T}\right) x=x_{\tau \tau}+2 \varepsilon x_{\tau T}+\varepsilon^{2} x_{T T} \\
\therefore \quad 0
\end{array} \begin{array}{rl}
\therefore & x_{t t}+\varepsilon\left(x^{2}-1\right) x_{t}+x \\
& =x_{\tau \tau}+2 \varepsilon x_{t T}+\varepsilon^{2} x T
\end{array}\right] \varepsilon\left(x^{2}-1\right)\left(x_{\tau}+\varepsilon x_{T}\right)+x \text { pD E }
$$

\qquad
6.3
\therefore Let $R(T) \underbrace{\theta_{T}(T)}=0=\left(2 R_{T}+R^{3} / 4-R\right)\}$ "secular" " required to arad
$\therefore \theta_{2}=$ cost, with $\theta(0)=0: \theta=0$ requresscinance resonance

$$
\frac{d R}{d T}=1 / 2\left[R-R^{3} / 4\right] \text { with } R(0)=1 \therefore R=\frac{2}{\left(1+3 e^{-T}\right)^{1 / 2}}
$$

$$
\therefore x(t, \varepsilon)=x(\tau, T, \varepsilon)=\underbrace{\frac{2}{\left(1+3 e^{\varepsilon t}\right)^{\prime \prime 2}} \cos t+o(\varepsilon)}_{\text {Amplitude } \rightarrow 2 \text { as } t \rightarrow \infty, \varepsilon \text { fixed. }}
$$

Higher order
We find $x_{1}=-R^{3} / 32 \sin 3 \tau+S(T) \sin (\tau+\varphi(T))$
To find $S(T), \varphi(T)$ resonant terms are suppressed for x_{2} via secular conditions.
However to suppress resonance we must expand with a slow-slow timescale $T_{2}=\varepsilon^{2} t$.

To see this, simpler example (do not lecture)

$$
\left.\begin{array}{rl}
\ddot{x}+ & 2 \varepsilon \dot{x}+x=0 \\
x= & A \underbrace{A e^{-\varepsilon t}} \cos \left(\sqrt{1-\varepsilon^{2}} t+B\right) \\
& \text { amplitude } \\
& \text { dan ft } \quad \text { phasedaft on } \\
\text { t } \sim 0\left(1 / \varepsilon^{2}\right)
\end{array}\right)
$$

\therefore Let $\tau=t, T_{1}=\varepsilon t_{1} T_{2}=\varepsilon^{2} t \quad\left\{\begin{array}{c}\text { and expand as } \\ \text { above }\end{array}\right.$
Similarly fer higher odes of the Van der Pol oscillator

NB Often presented via a complex representation eg. Van der Pd

$$
\begin{gathered}
x_{0}=R(T) \cos (\tau+\theta(T))=\frac{1}{2}\left(A e^{i \tau}+\bar{A} e^{-i \tau}\right) \\
A=R e^{i \theta}
\end{gathered}
$$

At $O\left(\varepsilon^{\prime}\right) \quad x_{1 \tau \tau}+x_{1}=-2 x_{0 \tau T}-\left(x_{0}^{2}-1\right) x_{0 \tau}$

$$
\begin{aligned}
& =-i\left(A_{T} e^{i \tau}-\bar{A}_{T} e^{-i \tau}\right)-\left[1 / 4\left(A e^{i \tau}+\bar{A} e^{-i \tau}\right)^{2}-1\right] \\
& \cdot \frac{i}{2}\left[A e^{i \tau}-\bar{A} e^{-i \tau}\right] \\
& =\left[-i\left(A_{T}-\frac{A\left(4-|A|^{2}\right)}{8}\right) e^{i \tau}+\binom{\text { Complex }}{\text { Conjugate }}\right]+\left[\begin{array}{l}
\text { Non } \\
\text { secular } \\
\text { terms }
\end{array}\right]
\end{aligned}
$$

\therefore Suppressing resonant terns, $e^{ \pm i \tau}$

$$
\begin{gathered}
A_{T}=\frac{A}{8}\left(4-|A|^{2}\right) \quad \text { with } A=R e^{i \theta} \\
\therefore \quad R_{T} e^{i \theta}+i R \theta_{T} e^{i \theta}=\frac{R e^{i \theta}}{8}\left(4-R^{2}\right) \\
\therefore \quad \\
R_{T}+i R \theta_{T}=R / 8\left(4-R^{2}\right) \quad \begin{array}{l}
\text { real } 8 \text { mag } \\
\text { parts }\}
\end{array} \begin{array}{l}
R \theta_{T}=0 \\
R_{T}=R_{/ 8}\left(4-R^{2}\right) \\
\text { as before }
\end{array}
\end{gathered}
$$

Note sometimes the slow variable, τ, is given the same label as the physical ranable t, so that

$$
x_{0}=R(T) \cos (t+\theta(T))=1 / 2\left(A e^{i t}+\bar{A} e^{-i t}\right) \text { above ak. }
$$

Homogenization
Example

$$
\begin{array}{ll}
\frac{d}{d x}\left(D\left(x_{1} x y_{\varepsilon}\right) \frac{d u}{d x}\right)=f(x) & 0<x<1 \tag{t}\\
u(0)=a, u(1)=b & x=x / \varepsilon
\end{array} \quad a, b \in \mathbb{R}^{+},
$$

$D_{1} f$ are smooth, with $0<D_{-}(x)<D(x, x)<D_{+}(x)$, with D_{4} continuous.
Question $C a n(t)$ be approximated by $d / d x\left(D(x) \frac{d u}{d x}\right)=f(x)$

$$
u(0)=a, u(1)=b
$$

for an averaged function $\begin{array}{r}\bar{D}(x) \text { 亿 does not contain fast } \\ 2 \text { variation. }\end{array}$
Multiple Scales Let $u(x, \varepsilon)=u(x, X, \varepsilon)$ with $X=x / \varepsilon$ no sepeparate arable fast variable

$$
\begin{aligned}
& \frac{d}{d x}=\frac{\partial}{\partial x}+\frac{1}{\varepsilon} \frac{\partial}{\partial X} \\
& \therefore\left(\partial x+\frac{1}{\varepsilon} \partial_{x}\right)\left[D(x, x)\left(\partial x+1 / \partial_{x}\right) u\right]=f(x) \\
& \therefore\left(\varepsilon \partial_{x}+\partial x\right)\left[D(x, x)\left(\varepsilon \partial_{x}+\partial x\right) u\right]=\varepsilon^{2} f(x)
\end{aligned}
$$

Let $u \sim u_{0}(x, x)+\varepsilon u_{1}(x, x)+\cdots$ $\left\{\begin{array}{l}\text { Also assume } \\ u_{0}, u_{1}, u_{2}, \ldots \text { bounded } \\ \text { for } A L L x\end{array}\right\}$.
$O\left(\varepsilon^{0}\right) \quad\left(D(x, x) u_{a x}\right)_{x}=0$
$0\left(\varepsilon^{\prime}\right) \quad\left(D(x, x)\left[u_{1 x}+u_{0 x}\right]\right)_{x}+\left(D(x, x) u_{0 x}\right)_{x}=0$

$$
\underline{0\left(\varepsilon^{2}\right)}\left(D(x, x)\left[u_{2 x}+u_{1 x}\right]\right)_{x}+\left(D(x, x)\left[u_{1 x}+u_{0 x}\right]\right)_{x}=f(x)
$$

$O\left(\varepsilon^{c}\right) \quad D u_{0 x}=c_{1}(x)$

$$
\therefore u_{0}=c_{2}(x)+c_{1}(x) \underbrace{\int_{0}^{x} \frac{d s}{D(x, s)}}_{\text {ard }(x) \text { as } x \rightarrow \infty} \text { as } \frac{1}{D_{+}(x)} \leqslant \frac{1}{D} \leqslant \frac{1}{D_{-}(x)} \quad c_{1}, c_{2} \text { arbitrary }
$$

us banded $\therefore u_{0}=c_{2}(x)$ and $c_{1}(x)=0$ all x.
\therefore We write $u_{0}=u_{0}(x)$.
$O\left(\varepsilon^{\prime}\right)$

$$
\begin{aligned}
& \left(D(x, x)\left[u_{0 x}+u_{1 x}\right]\right)_{x}=0 \\
& D\left[u_{0 x} x+u_{1 x}\right]=d_{1}(x)(t+) \\
& \therefore u_{1}=d_{1}(x) \int_{0}^{x} \frac{d s}{D(x, s)}-X u_{0 x}+d_{2}(x) \\
& L_{\text {Blow np }}
\end{aligned}
$$

as $x \rightarrow \infty$, with both ard (x).

$$
\therefore \text { Let } d_{1}(x)=\left[\lim _{x \rightarrow \infty} \frac{x}{\int_{0}^{x} \frac{d s}{D(x, s)}}\right] u_{0} x=D_{H}(x) u_{0 x}
$$

$O\left(\varepsilon^{2}\right)\left(D(x, x)\left[u_{2 x}+u_{1 x}\right]\right)_{x}=f(x)-d_{1 x} \quad$ using $(++)$.

$$
\therefore D(x, x)\left[u_{2 x}+u_{1 x}\right]=e_{1}(x)+\left(f(x)-d_{1} x\right) X
$$

$$
\therefore u_{2 x}=\frac{e_{1}(x)}{D(x, x)}+\left(f(x)-d_{1} x\right) \frac{x}{D(x, x)}-u_{1 x}
$$

$$
\begin{aligned}
& \therefore u_{2}= e_{1}(x) \int_{0}^{x} \frac{d s}{D\left(x_{1} s\right)}+(f(x)-d(x) \underbrace{\int_{0}^{x} \frac{s}{D(x, s)} d s}_{0}-\underbrace{\int_{0}^{x d}(x)}_{0} \text { as } x \rightarrow \infty \quad \underbrace{x}_{x \rightarrow \infty} u_{1} d s \\
&+e_{2}(x) \operatorname{crd} x \rightarrow \infty \\
& \operatorname{crd}(x) \operatorname{cs} x \rightarrow \infty
\end{aligned}
$$

