
C4.8 Complex Analysis: conformal maps and geometry

Sheet 4
Problem 1.

In the lectures I gave a sketch of the proof of the Distortion Theorem (Theorem 3.2.9 in
the lecture notes). Write the complete proof of this theorem. (There is no need to write the
“moreover” part.)

Solution. First of all we verify zf ′′(z)/f ′(z) = r∂r log f ′. Indeed

r∂r log f ′(reiθ) = r
∂rf
′(reiθ)

f ′(reiθ)
=
reiθf ′′(reiθ)

f ′(reiθ)
=
zf ′′(z)

f ′(z)

So
−4r + 2r2

1− r2
≤ <

(
zf ′′(z)

f ′(z)

)
≤ 4r + 2r2

1− r2

immediately implies
−4 + 2r

1− r2
≤ ∂r ln |f ′(z)| ≤ 4 + 2r

1− r2

Integrating with respect to r we have

log |f ′(reiθ)| = log |f ′(reiθ)| − log |f ′(0)| =
∫ r

0

∂r ln |f ′(reiθ)|dr

Now we can plug in the above inequality into the integral to get∫ r

0

−4 + 2r

1− r2
dr ≤ log |f ′(reiθ)| ≤

∫ r

0

4 + 2r

1− r2
dr

Explicit integration gives

log

(
1− r

(1 + r)3

)
≤ log |f ′(reiθ)| ≤ log

(
1 + r

(1− r)3

)
which, after exponentiation, gives the Distortion theorem. �

Problem 2.
The harmonic measure is conformally invariant by the definition. Let us assume that

the boundary ∂Ω is smooth. In this case the harmonic measure ω(z,A) is continuous with
respect to the arc-length i.e. there is the density function hz(ζ) = hz,Ω(ζ) on the boundary
of Ω such that

ω(z,A) =

∫
A

hz(ζ)ds(ζ)

where ds is the arc-length.
(1) Let Ω and Ω′ be two simply connected domains with analytic boundary, so that the

Riemann maps are differentiable on the boundary. Let f : Ω→ Ω′ be a conformal
transformation. Derive the relation between hz,Ω(ζ) and hf(z),Ω′(f(ζ)).

(2) Let Ω = D, compute the density of harmonic measure with the pole at z0 ∈ D.
(3) Show that the density of the harmonic measure hz,Ω(ζ) is equal to ∂nGΩ(z0, ζ)/2π,

where ∂nG is the normal derivative of the Green’s function on the boundary.
(4) Use the connection between the Green’s function and the harmonic measure to

derive the result from (1)
(5) (Bonus question) Have you seen the function h before? What is the name for this

function?
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Solution. (1) We know that harmonic measure is conformally invariant∫
A

hz0,Ω(ζ)ds(ζ) = ωΩ(z0, A) = ωΩ′(f(z0), f(A)) =

∫
f(A)

hf(z0),Ω′(ζ)ds(ζ)

changing variables in the last integral to ζ = f(t) for which we have ds(ζ) =
|f ′(t)|ds(t) we get∫

A

hz0,Ω(ζ)ds(ζ) =

∫
A

hf(z0),Ω′(f(t))|f ′(t)|ds(t)

Since this is true for every A, we have that

hz0,Ω(ζ) = |f ′(t)|hf(z0),Ω′(f(t)).

This means that the density of harmonic measure is covariant, which should not
be a surprise.

(2) Let f(z) = (z−z0)/(1− z̄0z) be a conformal transformation of D which sends z0

to 0. By the formula from the previous part and writing θ instead of eiθ we have

hz0(eiθ) = |f ′(eiθ)|h0(f(eiθ)) =
1

2π
|f ′(eiθ)|

where the last equality follows from the definition of harmonic measure in D.
Differentiating the formula for f we get

|f ′(ζ)| = 1− |z0|2

|1− z̄0z|2
=

1− r2

1− 2r cos(θ − φ) + r2

where ζ = eiθ and z0 = reiφ.
(3) There are many ways to prove this, one of the standard ways is to use Green’s

formula. I think that the easiest on is to use the conformal invariance.
In the case Ω = D and z0 = 0 this is easy to check: G(reiθ) = − log |z| =

− log(r). The normal derivative on the boundary is 1/r = 1. Since the density of
harmonic measure is 1/2π we have de desired result.

For other domains we notice that the Green’s function is conformally invariant
GΩ(z0, z) = Gf(Ω)(f(z0), f(z)), hence its normal derivative is covariant

∂nGΩ(z0, ζ) = |f ′(ζ)|∂nGf(Ω)(f(z0), f(ζ)).

(4) The argument above works in both directions. If we know that h is given by the
normal derivative of G (which is covariant since G is invariant), we immediately
have that h is also covariant.

This might look by a circular argument, but fortunately there is a way to prove
(3) without conformal invariance. From Green’s second identity where one of
the functions is the Green’s function and the other is harmonic we can get the
following formula for the solution of Dirichlet boundary problem

u(z0) =

∫
∂Ω

u(ζ)∂nG(z0, ζ)ds(ζ)

(here it is important to notice that the Green’s function in this formula differs from
ours exactly by the factor of 2π.

(5) The function h is the Poisosn kernel
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Problem 3.
Let Γ be the family of rectifiable curves in the annulusA(r,R) that are not contractable,

that is go around the circle |z| = r and let Γ′ be the family of rectifiable curves in A(r,R)
that connect two boundary components. Find λ(Γ) and λ(Γ′).

Solution. Let us consider the metric ρ(z) = 1/|z|. We are going to show that this metric
is extremal.

Let Γ0 be the family of all circles with center at the origin. By γr0 we denote the circle
with radius r0. It is easy to see that L(γr0 , ρ) =

∫
γr0

r−1
0 ds =

∫ 2π

0
dθ = 2π.

For an arbitrary γ ∈ Γ, since γ goes around the origin, for each θ there is at least one
point of γ with argument θ, let us denote this point by γ(θ). Then

L(γ, ρ) =

∫
γ

1

|γ|
ds ≥

∫ 2π

0

= 2π.

This proves that the curves of Γ0 are the shortest curves in Γ with respect to our metric ρ.
Finally, let h be a non-negative function such that

∫
γr0

h ≥ 0 for every γr0 ∈ Γ0.
Integrating with respect to r0 we have

0 ≤
∫ R

r

1

t

∫ 2π

0

h(teiθ)tdθ =

∫ R

r

∫ 2π

0

ρ(teiθ)h(teiθ)tdθdt =

∫∫
A

h(z)ρ(z).

This proves that the metric is extremal. Finally we compute

A(A, ρ) =

∫∫
A

1

t2
=

∫ R

r

∫ 2π

0

1

t
dθdt = 2π log(R/r)

which together with L(Γ, ρ) = 2π gives

λ(Γ) =
2π

log(R/r)

For Γ′ the extremal metric is the same and the proof that it is extremal is essentially the
same (the family of the shortest curves is given by all radii). In this case

L =

∫ R

r

1

t
dt = log(R/r)

and A = 2π log(R/r) as before. Combining them together we have

λ(Γ′) =
1

2π
log(R/r)

Note: This is the conformal modulus that we discussed in the chapter about doubly
connected domains.

Note: As expected λ(Γ)λ(Γ′) = 1. �

Problem 4.
Use the symmetry rule to prove the following statement.
Let Ω1 be a domain in the upper half plane and let E1 and F1 be two sets on ∂Ω. Let

Ω2, E2, and F2 be their symmetric images with respect to R. We define Ω = Ω1 ∪ Ω2 (to
be completely rigorous we also have to add the real part of the boundary), E = E1 ∪ E2,
and F = F1 ∪ F2. Then

2dΩ(E,F ) = dΩ1
(E1, F1) = dΩ2

(E2, F2).



Solution. The domain Ω is symmetric and the family of the curves connecting E and F is
symmetric, hence we can apply the symmetry rule and consider only symmetric metrics ρ.

For a curve γ connecting E and F we can consider its upper half-plane version γ′ (real
part of γ′ is the same as the real part of γ and the imaginary part of γ′ is the modulus of
the imaginary part of γ). This curve is connecting E1 and F1

Since ρ is symmetric L(γ, ρ) = L(γ, ρ) and A(Ω, ρ) = 2A(Ω1, ρ). Since every sym-
metric metric in Ω corresponds to a metric in Ω1 we have that

dΩ(E,F ) = sup
ρ

L2(Γ, ρ)

A(Ω, ρ)
= sup

L2(Γ1, ρ)

2A(Ω1, ρ)
=

1

2
dΩ1

(E1, F1)

�

Problem 5.
Let Ω be a simply connected domain, z0 ∈ Ω and A be an arc (connected set) on the

boundary of Ω. If you wish, you may assume that Ω is a nice domain, say, a domain
bounded by an analytic Jordan curve, but this is not too important.

(1) Let Ω′, z′0 and A′ be another domain, a point and an arc as above. Show that there
is a conformal map f such that f(Ω) = Ω′, f(z0) = z′0 and f(A) = A′ if and
only if ωΩ(z0, A) = ωΩ′(z′0, A

′).
(2) Let Γ be the family of all rectifiable curves in Ω such that their endpoints are on A

and they separate z0 from ∂Ω \ A. Show that there is a function F (independent
of Ω, z0 and A) such that λ(Γ) = F (ωΩ(z0, A)).

FIGURE 1. Family of curves Γ.

(3) By part (1) we can assume without loss of generality that Ω = D, z0 = 0 and A is
the arc {eiθ,−θ0 < θ < θ0} for some θ0 ∈ [0, π). Let Γ be the family of curves
as defined in part (2). Show that

λ(Γ) = 2dD+([−1, 0], A+) = 4dD\[−1,0]([−1, 0], A),

where D+ is the upper half-disc, A+ is the upper half of A and dΩ(E,F ) is the
extremal distance, that is the extremal length of the family of curves connecting
boundary sets E and F inside Ω.



(4) Our next goal is to compute dD+
([−1, 0], A+). We know that D+ with marked

points −1, 0, 1, eiθ0 could be mapped onto a rectangle in such a way that the
marked points are mapped to the vertices. Use this fact to compute dD+

([−1, 0], A+)
in terms of θ0. Combine all the results to find a formula for the function F from
part (2).

(Hint: Use the fact that the upper half-plane with marked points−1/k,−1, 1, 1/k
could be mapped onto a rectangle with the ratio of side lengths equal to 2K(k)/K ′(k),
where K and K ′ are the complete elliptic integral of the the complementary com-
plete elliptic integrals of the first king. You don’t need to know anything about K
and K ′, the only important thing is that they give an explicit expression for the
side length ratio in terms of k.)

Solution. (1) Let φ be a conformal transformation from Ω onto D with φ(z0) = 0.
This transformation sends A onto an arc of length

2πωD(0, φ(A)) = 2πωΩ(z0, A)

Two configurations are conformally equivalent if and only if their images in D
are equivalent, which happens if and only if the corresponding arcs have the same
length. By the formula above this means that harmonic measures must be equal.

(2) Extremal length is a conformal invariant of the configuration, which, by (1) is
uniquely defined by the harmonic measure, this proves that λ(Γ) depends only on
ω(z0, A)

(3) By (1) we can conformally transform (Ω, z0, A) onto D, 0 and an arc {eiθ,−θ0 <
θ < θ0} where θ0 = πωΩ(z0, A).

By the symmetry rule it is sufficient to consider symmetric metrics ρ. Next we
want to symmetrize Γ

Let γ(t) = (x(t), y(t)) be any curve from Γ. Without loss of generality we
can assume that its starting point is in the upper half-plane. Let us define γ+(t) =
(x(t), |y(t)|) where 0 ≤ t ≤ t+ where t+ is the first t such that −1 < x(t) < 0
and y(t) = 0, i.e. the first time γ crosses the interval [−1, 0]. After that we can
join together γ+ and its symmetric image to form a symmetric curve form Γ. In
the similar way we can construct γ−(t) = (x(t),−|y(t)|) with t− < t where
t− is the last time the curve γ intersects [−1, 0]. As before we joint γ− with its
symmetric image. It is clear that for any symmetric metric at least one of these
symmetric curves has the length bounded by the length of γ. This proves that in
the definition of L(Γ, ρ) we can consider only symmetric curves that do not cross
[0, 1] (but may touch it) and cross [−1, 0] only once.

(A) (B)

FIGURE 2. A curve γ (a) and its symmetrized versions γ− and γ+ (b).



By symmetry, the area of the disc is twice the area of the upper half-disc D+

and the length of a symmetric curve is twice the length of its upper half. This
proves that λ(Γ) = 2λ(Γ′) where Γ′ is the family of curves in the upper half-disc
that connect the arc A+ = {eiθ, 0 ≤ θ ≤ θ0} with the interval F = [−1, 0]. By
the definition, λ(Γ′) = dD+

(A+, F ).
The same symmetry argument or problem 4 implies that

dD+
([−1, 0], A+) = 2dD\[−1,0]([−1, 0], A)

(4) It is sufficient to compute the extremal distance between A+ and [−1, 1] in the up-
per half-disc. The function J(z) = −z/2−1/2z conformally maps the upper half-
disc onto H in such a way that J([−1, 1]) = [−∞,−1] and J(E′) = [cos(θ), 1].
The simplest geometry where we can compute the extremal distance is the rec-
tangle where it is the ratio of side lengths. To map it to the rectangle we first
find a Möbius transformation that sends (∞, 0, cos(θ), 1) to (−1/k,−1, 1, 1/k).
Möbius transformations preserve cross-ratios, this means that such map exists if
and only if cross-ratios are the same, this gives us a relation between cos(θ) and k

2

1 + cos(θ)
=

(1 + k)2

4k

or (since 0 < k < 1)

k = k(θ) =

√
2−

√
1− cos(θ)

√
2 +

√
1− cos(θ)

.

Christoffel-Schwarz function maps H with these marked points onto a rectangle
with ratio of side lengths

2K(k)

K ′(k)
.

Hence λ(Γ) = 4K(k)/K ′(k) whereK andK ′ are elliptic integrals and k = k(θ).
�

Problem 6.
Let Ω be a conformal triangle, i.e. a simply connected domain bounded by a Jordan

curve with three marked points on it. We will call these marked points the vertices and the
arcs between them the sides of the conformal triangle Ω. Let γ be a continuous curve in Ω̄
such that it intersects with all three sides of Ω.

FIGURE 3. Conformal triangle and a curve inside touching all three sides.



Use extremal lengths to show that there exists a curve γ as above such that

L(γ) ≤ 31/4
√
A(Ω)

where L(γ) is the usual Euclidean length of γ and A(Ω) is the area of Ω.
Show that the constant 31/4 is sharp.

Solution. First of all we have to formulate the question in terms of extremal length. Let
Γ be the family of curves connecting all three sides. Since all conformal triangles are
conformally equivalent, λ(Γ) is just an absolute constant independent of everything.

Let us consider ρ = 0. By the definition

λ(Γ) ≥ inf
γ

L2(γ)

A(Ω)

which implies that there is γ such that L(γ) ≤
√
λ(Γ)A(Ω). We just have to compute

λ(Γ). By conformal invariance it is enough to consider the case of equilateral triangle with
side length 1.

Let Γ0 be the union of three families of curves. In each the curves start as straight lines
orthogonal to one of the sides, reflect of the other side and end on the third side. It is easy
to see that all these curves have the same length

√
3/2 with respect to ρ = 1. It is also easy

to check that this ρ is indeed extremal. This proves that λ(Γ) = (3/4)/(
√

3/4) =
√

3.
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