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It is assumed that the readers are familiar with basics of the Complex Analysis,
namely the material covered by a standard one term Complex Analysis course.
There are several facts that are sometimes excluded from such courses but will be
used extensively in this course. We will state these results without proof for the
sake of self-consistency.

Greens’ formula in complex form. The classical Greens formula states that if Ω
is a domain bounded by a finite number of positively oriented curves and functions
P (x, y) and Q(x, y) are continuously differentiable in the closure of Ω then∫

Ω
[∂xP (x, y)− ∂yQ(x, y)] dxdy =

∫
∂Ω
Q(x, y)dx+ P (x, y)dy.

This formula could be rewritten in a complex form. Let F (z, z̄) = F (x, y) be a
(real) continuous differentiable function, then∫

Ω
∂z̄F (z, z̄)dxdy =

1

2

∫
Ω

[∂xF (x, y) + i∂yF (x, y)] dxdy

=
1

2i

∫
∂Ω
F (x, y)dz.

(1)

In particular, if we use this formula with F = z̄ we get a useful formula

Area(Ω) =
1

2i

∫
∂Ω
z̄dz. (2)

Corollaries of the Cauchy formula. Cauchy integral formula is the cornerstone
of the complex analysis with numerous consequences. To a large extent it is the
reason why the complex analysis is so different from the real analysis. Here we
list some of its immediate corollaries that will be extensively used throughout the
course.

Proposition 0.1. Let fn be analytic functions on a domain Ω. Let us assume that
fn → f locally uniformly on Ω, then f is also an analytic function and f ′n → f
locally uniformly on Ω.

Theorem 0.2 (Liouville). Let f be an entire function, that is a function analytic in
the entire complex plane C. If f is bounded, then it must be a constant function.

Proposition 0.3 (Maximum modulus principle). Let f be analytic in Ω and B̄(z0, r)
be a closed disc inside Ω, then

|f(z0)| ≤ sup
θ∈[0,2π]

|f(z0 + reiθ)|.

The equality occurs if and only if f is constant in Ω. In particular, this implies that
|f | has no local maxima inside Ω unless f is constant.
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Proofs of these three results are based on the Cauchy formula and could be
found in many standard textbooks, in particular in [Rud87, 10.23, 10.28, and
10.24].

Along the same lines one can prove a similar result for harmonic functions.

Proposition 0.4 (Maximum principle for harmonic functions). Let h be a harmonic
function in Ω, then h has no local extrema inside Ω. If h is continuous up to the
boundary and h ≤ c on the boundary, then h ≤ c in Ω as well.

Schwarz reflection. Schwarz reflection is the simplest way of extending certain
analytic functions to analytic functions in large domains. Although it could be ap-
plied to a rather small class of functions, this method turned out to be very powerful
and extremely useful.

Theorem 0.5 (Schwarz reflection principle). Let Ω be a symmetric domain, i.e.
z ∈ Ω if and only if z̄ ∈ Ω, Ω+ be its upper half

Ω+ = {z ∈ Ω : Im z > 0} = Ω ∩H,

and L be a part of the real axis in Ω. Suppose that f is a function analytic in Ω+

and continuous in Ω+∪L. If Im f = 0 on L, then f could be analytically extended
to the entire Ω by f(z) = f̄(z̄).

The proof is based on a simple fact that f̄(z̄) is an analytic function and uses
the Morera theorem to claim that the extension is analytic. Details could be found
in many textbooks, in particular, in [Ahl78, Section 6.5]. Similar result could be
found in [Rud87, Theorem 11.14].

One way of thinking about this result is in terms of symmetries, namely trans-
formations T such that T ◦ T is an identity. In our case T is the symmetry with
respect to the real line, namely T (z) = z̄. Note that this function is anti-analytic
(analytic as a function of z̄). Schwarz reflection is based on the fact that if f is an-
alytic then T ◦ f ◦T is also analytic, since f is real on the real line f and T ◦ f ◦T
could be glued together. Similar argument could be used for other symmetries, in
particular, the symmetry with respect to a circle. The precise formulation is given
by the following theorem:

Theorem 0.6 (Schwarz reflection principle). Let Ω be a domain symmetric with
respect to a circle {z : |z| = R}, i.e. z ∈ Ω if and only if TR(z) = R2/z̄ ∈ Ω. Let
Ω+ be its outer part Ω+ = {z ∈ Ω, |z| > R} and L be the part of the circle inside
the domain, i.e. Ω ∩ {z : |z| = R}. Suppose that f is a function analytic in Ω+,
continuous in Ω+ ∪ L and |f | = r on L. Then f could be extended to the entire Ω
by

f(z) = Tr(f(TR(z))) = r2/f̄
(
R2/z̄

)
.
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Argument principle. It is one of the first explicit examples of the connection
between analysis and geometry. The standard statement is given below:

Theorem 0.7 (Argument principle). Let f be an analytic function in a domain Ω
and γ be a positively-oriented contractable simple closed curve in Ω, then

1

2πi

∫
γ

f ′(z)

f(z)
dz

is equal to the number of zeroes of f inside γ (counting multiplicities). Alterna-
tively, it is equal to the winding number of f(γ) with respect to the origin.

There is no obvious geometry in this statement, but f ′/f could be interpreted
as (log f)′, so the integral could be interpreted as the normalized increment of the
argument along the curve f(γ), which is equal to the number of times f(γ) goes
around the origin. This quantity is also known as the index or the winding number
of f(γ).

One of the standard corollaries of the argument principle is the Rouché theorem
which states that if two functions are close on a contour, then the number of zeros
inside is the same.

Theorem 0.8 (Rouché). Let f and g be two analytic functions in some domain Ω
and let γ ⊂ Ω be a closed contour. If |f − g| < |f | on γ, then the functions f and
g have the same number of zeroes inside γ.

Proofs of the last two theorems could be found in [Ahl78, Section 5.2].

Logarithm function. Very often we will need to consider logarithms (all loga-
rithms in this course will be natural) or powers of various functions. In many cases
the usual branch-cuts do not work, so we will need the following result:

Proposition 0.9. Let Ω be a simply connected domain and f be an analytic func-
tion which does not vanish in Ω, then it is possible to define a single-valued branch
of arg f in Ω. In particular, this allows to define single-valued branches of log(f)
and fα.

This is a rather important results and there are two slightly different ways to
think about it. We sketch the ideas behind both proofs.

The first proof is of geometric nature. It is a well known fact that for any simple
curve that does not go through the origin, one can define a single-valued branch of
argument along the curve. This is proved by covering the curve by a finite number
of balls that do not contain the origin.

Let us fix a point z0 ∈ Ω and a value of arg f(z0) = θ0. Let γ be a curve
connecting z0 and z1 ∈ Ω inside Ω. By the previous argument, we can define a
branch of argument on f(γ) such that arg f(z0) = θ0. We define arg f(z1) to be
the value of the argument that is defined along f(γ).
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We have to show that this notion is well defined, namely, that the value of the
argument does not depend on a particular choice of γ.

Let us assume that this is not the case and there is another curve γ̃ connecting z0

and z1 such that the argument of f(z1) along f(γ̃) is different. By concatenating
f(γ) with reverse of f(γ̃) we get a closed curve such that the increment of the
argument along this curve is not zero. This implies that this curve has a non-trivial
winding number, i.e. it goes around the origin. Since origin is not in f(Ω), this
implies that this curve is not contractable inside f(Ω). On the other hand this is
an image of a closed curve inside a simply connected domain Ω. Since all such
loops are contractable, its image must also be contractable within f(Ω), which
contradicts our assumption.

Figure 1: The image of Ω might be non simply connected, but the image of any
(contractable) loop must be contractable.

This proves that our construction of arg f(z) is well defined. Since log f(z)
and zα could be defined in terms of the argument, this leads to the construction of
these function as well.

The second approach is more analytic. Let us fix some point z0 ∈ Ω and
consider the function

g(z) = log(f(z0)) +

∫ z

z0

f ′(z)

f(z)
dz,

where log(f(z0)) is any branch of logarithm and the integral is along any curve
connecting z0 to z inside Ω. Since f ′/f is analytic in a simply connected domain
Ω, this integral is independent of the choice of the curve. The function g is a
well-defined analytic function in Ω. It is not difficult to show that g is a branch of
log(f).
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Complex sphere. In many cases it is convenient to work with functions that are
analytic in the entire complex sphere Ĉ or in a domain which contains infinity.
These functions are not very different from the functions analytic in C or its subdo-
mains, but it requires tweaking of several definitions. Functions analytic at infinity
are often ignored in the basic complex analysis courses and books. Here we give a
very brief introduction.

We consider Ĉ to be the one-point compactification of C, namely Ĉ = C ∪
{∞}. We will often think of infinity as a complex number. There is an obvious
disadvantage of this approach since not all operations are defined, in particular one
can not multiply infinity by zero or subtract infinity from itself.

It is possible to identify Ĉ with a sphere which is called the complex sphere
or the Riemann sphere. One usually identifies infinity with the north pole and
remaining part of the sphere is identified with the complex plane C using the stere-
ographic projection. Complex plane C is the horizontal plane passing through the
equator and each point z on the sphere (except the north pole) is projected to a
point which is the intersection of the line passing through z and the north pole with
the plane C (see Figure 2, more information about the Riemann sphere could be
found in [Gam01, Section 1.2]. ). Under this projection ∞ is identified with the
north pole, the unit disc D is the southern hemisphere, and D− = {z : |z| > 1} is
the northern hemisphere. It is important to notice, that here we presume that D−
contains ∞, in particular this means that its closure is compact. This projection
allows to define the chordal distance on the complex plane, namely the distance in
C which is the same as the Euclidean distance between the corresponding points
on the unit sphere. It is not very difficult to compute the chordal distance between
two points

d(z, w) =
2|z − w|√

1 + |z|2
√

1 + |w|2
,

d(z,∞) =
2√

1 + |z|2
.

The infinitesimal form is

dσ =
2ds

1 + |z|2
.

It gives the spherical metric which corresponds to lengths of curves on the sphere.
In many cases it is convenient to consider the (extended) complex plane equipped
with this metric since infinity is not an exceptional point with respect to this metric
and many statements are easier to state and or prove.

On the other hand, there is a natural topology in Ĉ and the corresponding notion
of convergence. We say that zn → ∞ if for every M > 0 there is N such that
|zn| > M for all n > N . With this definition we can define the limits of functions
at infinity and limits of functions that attain infinite values.

The definitions of analyticity are a bit more involved. The simplest way is
to use the mapping z 7→ 1/z. Using this map we can reformulate the continuity
at infinity: f(z) is continuous at infinity if f(1/z) is continuous at zero; for a
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Figure 2: Stereographic projection of the complex sphere onto the plane crossing
the equator.

function such that f(z0) =∞, it is continuous at z0 if 1/f(z) is continuous at z0.
In the same spirit we can deal with differentiability, a function f is differentiable at
infinity if f(1/z) is differentiable at 0. A function with f(z0) =∞ is differentiable
at z0 if 1/f(z) is differentiable. We will see a lot of functions with f(∞) = ∞,
they are differentiable at infinity if 1/f(1/z) is differentiable at 0.

Alternatively, for a function analytic in the neighbourhood of infinity we can
write a Laurent series

f(z) =

∞∑
−∞

anz
n, R < |z| <∞

For some R < ∞. Condition f(∞) = ∞ is equivalent to the condition that not
all an with n > 0 are equal to zero. Differentiability is equivalent to the statement
that only finitely many an with n > 0 are non-zero. Without treating infinity as a
proper point, this condition is equivalent to f having a pole at infinity.

Finally, the only functions that are one-to-one in the neighbourhood of infinity
are of the form

f(z) = a1z + a0 +

∞∑
n=1

a−nz
−n

where a1 6= 0. For these functions we define the derivative at infinity to be
f ′(∞) = a1.

Möbius transformations. Möbius transformations are often covered by basic
courses in Complex Analysis. Here we give a very short list of the main facts.
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The Möbius transformations are also called linear fractional transformations.
They are the functions of the form

f(z) =
az + b

cz + d

where a, b, c, d ∈ C with ad− bc 6= 0. It is easy to see that the map corresponding
to the coefficients a, b, c, d and λa, λb, λc, λd are the same as long as λ 6= 0.

These functions are analytic, moreover they are bijective maps from Ĉ onto
itself. This is one of the first examples motivating the use of Ĉ. Later on we will
see that they are the only analytic maps like this.

Any Möbius transformation maps circles and lines in C to circles and lines.
This has a more natural form if one thinks about the Riemann sphere Ĉ, since
under the stereographic projections circles and lines in C correspond to the circles
in Ĉ (lines correspond to the circles passing through the north pole).

Direct computation shows that for any two triplets of distinct points (z1, z2, z3)
and (w1, w2, w3) there is a unique Möbius transformation f such that f(zi) = wi.
In particular, this implies that any circle in Ĉ could be mapped to any other circle.

For four points this is no longer true. For a quadruplet there is a non-trivial
quantity which is preserved by Möbius transformations: cross-ratio

(z1, z2; z3, z4) =
(z1 − z3)(z2 − z4)

(z2 − z3)(z1 − z4)
.

This formula makes sense when all points zi ∈ C. If one of them is ∞, the two
factors involving it should be removed from the formula above. This quantity is
invariant under Möbius transformations, that if

(z1, z2; z3, z4) = (f(z1), f(z2); f(z3), f(z4))

for any Möbius transformation f . Moreover, one quadruplet could be mapped onto
another if and only if their cross-ratios are the same.

Sometimes it is convenient to think that the cross ratio (z1, z2, z3, z) is a func-
tion of z. Then is has a useful interpretation: as a function of z, this is the only
Möbius transformation which sends z1 to∞, z2 to 0, and z3 to 1.

Conformal maps. In this course we are mostly interested in one-to-one analytic
functions. Since we think of them as about mappings from one domain to another
we call them maps. It is a standard fact from the basic complex analysis that an
analytic function f is locally one-to-one if and only if its derivative never vanishes.
Such maps are called conformal. Slightly abusing notations we will use this term
for globally bijective maps. It is easy to see that the condition that f ′ never vanishes
does not imply global injectivity. Indeed, the function f(z) = z2 is analytic in the
complement of the unit disc and its derivative does not vanish there, but it is two-
to-one map. There are two other terms for analytic one-to-one maps: univalent and
schlicht. We will use these terms interchangeably.
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