C4.8 Complex Analysis: conformal maps and geometry

Sheet 1

Problem 1.

Show that the only Möbius transformations that map \mathbb{D} , \mathbb{C} or \mathbb{H} to themselves are of the form

$$e^{i\theta} \frac{z-a}{1-\bar{a}z}, \quad a \in \mathbb{D}, \ \theta \in \mathbb{R}$$
$$az+b, \quad a,b \in \mathbb{C}$$
$$\frac{az+b}{cz+d}, \quad a,b,c,d \in \mathbb{R}, \ ad-bc>0$$

Problem 2.

Prove that all conformal automorphisms of $\widehat{\mathbb{C}}$, \mathbb{C} , and \mathbb{H} are Möbius transformations. **Problem 3.**

For the following domains find a conformal map onto \mathbb{D} or \mathbb{H} .

- (1) Infinite strip, $0 < \Im z < 1$.
- (2) Domain bounded by two touching circles. Namely, let Let Ω be the domain between two circles or radii r and R centred at r and R. See Figure 1a.
- (3) The upper half-plane with a slit $\Omega = \mathbb{H} \setminus [0, it]$ with t > 0, see Figure 1b. (*Hint: You might start with applying* $z \mapsto z^2$.)
- (4) The unit disc with a slit $\mathbb{D} \setminus [x, 1]$ with -1 < x < 1, see Figure 1c.

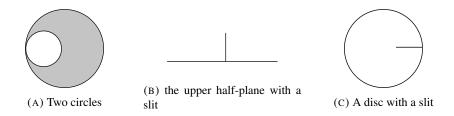


FIGURE 1. Three domains where uniformizing maps could be found explicitly.

Problem 4.

Let \mathcal{F} be the family of all functions of the form $f_w(z) = z/(z-w)$ with |w| > 1. Show without use of Montel's theorem that this family is normal in the unit disc. **Problem 5.**

Show that the family \mathcal{F} of all holomorphic functions in \mathbb{D} with positive real part is normal.

Problem 6.

We define the Hardy space $H^1 = H^1(\mathbb{D})$ as the space of all holomorphic functions in \mathbb{D} such that

$$||f||_{H^1} = \sup_{0 < r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})| \mathrm{d}\theta < \infty.$$

Show that the family of functions $f \in H^1$ such that $||f||_{H^1} \leq 1$ is normal.