C4.3 Functional Analytic Methods for PDEs: Q2(a)(ii) – 2018

Luc Nguyen

University of Oxford

May 2020

Given:

- $\Omega \subset \mathbb{R}^n$: bounded C^1 domain.
- $1 \le p < \infty$.

Want: Prove the Poincaré-Sobolev inequality

$$\|u-[u]_{\partial\Omega}\|_{L^p(\Omega)} \leq C(\Omega, p, n) \|Du\|_{L^p(\Omega)}$$
 for all $u \in W^{1,p}(\Omega)$.

Here

$$[u]_{\partial\Omega} = rac{1}{|\partial\Omega|} \int\limits_{\partial\Omega} u \,\mathrm{d}x.$$

Start of proof

Suppose by contradiction that the conclusion fails. Then there exist 0 ≠ u_j ∈ W^{1,ρ}(Ω) such that

$$\|u_j-[u_j]_{\partial\Omega}\|_{L^p(\Omega)}\geq j\|Du_j\|_{L^p(\Omega)}.$$

• Replacing u_j by $u_j - [u_j]_{\partial\Omega}$, we may assume that $[u_j]_{\partial\Omega} = 0$. Then

$$\|u_j\|_{L^p(\Omega)}\geq j\|Du_j\|_{L^p(\Omega)}.$$

• Replacing u_j by $\frac{1}{\|u_j\|_{L^p(\Omega)}}u_j$, we may assume that $\|u_j\|_{L^p(\Omega)} = 1$. Then

$$1=\|u_j\|_{L^p(\Omega)}\geq j\|Du_j\|_{L^p(\Omega)}.$$

 In particular (u_j) is bounded in W^{1,p}(Ω) and (Du_j) converges strongly to 0 in L^p(Ω).

Use of Rellich-Kondrachov's theorem

- By Rellich-Kondrachov's theorem, the embedding *W*^{1,p}(Ω) → *L*^p(Ω) is compact. Thus, passing to a subsequence if necessary, we may assume that (*u_j*) converges strongly in *L*^p(Ω) to some *u* ∈ *L*^p(Ω).
- As Du_j → 0 in L^p(Ω), we have Du = 0. As Ω is a connected (since it is a domain), we have u ≡ a for some constant a.
- We then have $u_j \to a$ in $W^{1,p}(\Omega)$. One one hand this implies

$$1 = \|u_j\|_{L^p(\Omega)} o |a| |\Omega|^{1/p}$$
 and so $a \neq 0$.

On the other hand, by the trace theorem, $u_j|_{\partial\Omega}$ converges to *a* in $L^p(\partial\Omega)$, hence in $L^1(\Omega)$ and so

$$0=[u_j]_{\partial\Omega}\to a,$$

which amounts to a contradiction.